Fix SQL creation of user and move log anaysis to use python systemd - journal lib

This commit is contained in:
Brian Read 2025-04-03 20:15:41 +01:00
parent da71021889
commit 3b0b574171
2 changed files with 117 additions and 17 deletions

View File

@ -91,4 +91,7 @@ CREATE TABLE IF NOT EXISTS `time` (
) ENGINE=MyISAM DEFAULT CHARSET=latin1;
grant all privileges on mailstats.* to 'mailstats'@'localhost' identified by 'mailstats';
CREATE USER 'mailstats'@'localhost' IDENTIFIED BY 'mailstats';
GRANT ALL PRIVILEGES ON mailstats.* TO 'mailstats'@'localhost';
FLUSH PRIVILEGES;

View File

@ -56,7 +56,7 @@
# pip3 install numpy
# pip3 install plotly
# pip3 install pandas
# pip3 install matplotlib
# NOTE: No matplotlib
#
# Rocky8: (probably - not yet checked this)
#
@ -90,6 +90,8 @@ import plotly.express as px
import colorsys
import pymysql
import json
from systemd import journal
enable_graphs = True;
try:
import matplotlib.pyplot as plt
@ -136,6 +138,94 @@ PERCENT = TOTALS + 1
ColTotals = 24
ColPercent = 25
def get_logs_from_Journalctl(date='yesterday'):
# JSON-pretty output example from journalctl
# {
# "__CURSOR" : "s=21b4f015be0c4f1fb71ac439a8365ee7;i=385c;b=dd778625547f4883b572daf53ae93cd4;m=ca99d6d;t=62d6316802b05;x=71b24e9f19f3b99a",
# "__REALTIME_TIMESTAMP" : "1738753462774533",
# "__MONOTONIC_TIMESTAMP" : "212442477",
# "_BOOT_ID" : "dd778625547f4883b572daf53ae93cd4",
# "_MACHINE_ID" : "f20b7edad71a44e59f9e9b68d4870b19",
# "PRIORITY" : "6",
# "SYSLOG_FACILITY" : "3",
# "_UID" : "0",
# "_GID" : "0",
# "_SYSTEMD_SLICE" : "system.slice",
# "_CAP_EFFECTIVE" : "1ffffffffff",
# "_TRANSPORT" : "stdout",
# "_COMM" : "openssl",
# "_EXE" : "/usr/bin/openssl",
# "_HOSTNAME" : "sme11.thereadclan.me.uk",
# "_STREAM_ID" : "8bb0ef8920af4ae09b424a2e30abcdf7",
# "SYSLOG_IDENTIFIER" : "qpsmtpd-init",
# "MESSAGE" : "Generating DH parameters, 2048 bit long safe prime, generator 2",
# "_PID" : "2850",
# }
# and the return from here:
# {
# '_TRANSPORT': 'stdout', 'PRIORITY': 6, 'SYSLOG_FACILITY': 3, '_CAP_EFFECTIVE': '0', '_SYSTEMD_SLICE': 'system.slice',
# '_BOOT_ID': UUID('465c6202-36ac-4a8b-98e9-1581e8fec68f'), '_MACHINE_ID': UUID('f20b7eda-d71a-44e5-9f9e-9b68d4870b19'),
# '_HOSTNAME': 'sme11.thereadclan.me.uk', '_STREAM_ID': '06c860deea374544a2b561f55394d728', 'SYSLOG_IDENTIFIER': 'qpsmtpd-forkserver',
# '_UID': 453, '_GID': 453, '_COMM': 'qpsmtpd-forkser', '_EXE': '/usr/bin/perl',
# '_CMDLINE': '/usr/bin/perl -Tw /usr/bin/qpsmtpd-forkserver -u qpsmtpd -l 0.0.0.0 -p 25 -c 40 -m 5',
# '_SYSTEMD_CGROUP': '/system.slice/qpsmtpd.service', '_SYSTEMD_UNIT': 'qpsmtpd.service',
# '_SYSTEMD_INVOCATION_ID': 'a2b7889a307748daaeb60173d31c5e0f', '_PID': 93647,
# 'MESSAGE': '93647 Connection from localhost [127.0.0.1]',
# '__REALTIME_TIMESTAMP': datetime.datetime(2025, 4, 2, 0, 1, 11, 668929),
# '__MONOTONIC_TIMESTAMP': journal.Monotonic(timestamp=datetime.timedelta(11, 53118, 613602),
# bootid=UUID('465c6202-36ac-4a8b-98e9-1581e8fec68f')),
# '__CURSOR': 's=21b4f015be0c4f1fb71ac439a8365ee7;i=66d2c;b=465c620236ac4a8b98e91581e8fec68f;m=e9a65ed862;t=
# }
"""
Retrieve and parse journalctl logs for a specific date and units,
returning them as a sorted list of dictionaries.
"""
try:
# Parse the input date to calculate the start and end of the day
if date.lower() == "yesterday":
target_date = datetime.now() - timedelta(days=1)
else:
target_date = datetime.strptime(date, "%Y-%m-%d")
# Define the time range for the specified date
since = target_date.strftime("%Y-%m-%d 00:00:00")
until = target_date.strftime("%Y-%m-%d 23:59:59")
# Convert times to microseconds for querying
since_microseconds = int(datetime.strptime(since, "%Y-%m-%d %H:%M:%S").timestamp() * 1_000_000)
until_microseconds = int(datetime.strptime(until, "%Y-%m-%d %H:%M:%S").timestamp() * 1_000_000)
print(f"{since_microseconds} {until_microseconds} ")
# Open the systemd journal
j = journal.Reader()
# Set filters for units
j.add_match(_SYSTEMD_UNIT="qpsmtpd.service")
j.add_match(_SYSTEMD_UNIT="uqpsmtpd.service")
j.add_match(_SYSTEMD_UNIT="sqpsmtpd.service")
# Filter by time range
j.seek_realtime(since_microseconds // 1_000_000) # Convert back to seconds for seeking
# Retrieve logs within the time range
logs = []
for entry in j:
entry_timestamp = entry.get('__REALTIME_TIMESTAMP', None)
entry_microseconds = int(entry_timestamp.timestamp() * 1_000_000)
#print(f"{entry_microseconds}")
if entry_timestamp and since_microseconds <= entry_microseconds <= until_microseconds:
logs.append(entry)
# Sort logs by __REALTIME_TIMESTAMP in ascending order
sorted_logs = sorted(logs, key=lambda x: x.get("__REALTIME_TIMESTAMP", 0))
return sorted_logs
except Exception as e:
print(f"Unexpected error: {e}")
return {}
def transform_to_dict(data, keys, iso_date):
"""
Transforms a 26x17 list of lists into a list of dictionaries with specified keys.
@ -145,7 +235,7 @@ def transform_to_dict(data, keys, iso_date):
keys (list): A 1D array specifying the keys for the dictionaries.
iso_date (str): A date in ISO format to prepend to each row number.
Returns:
Returns:get_JSOON
list: A list of dictionaries with transformed data.
"""
# Validate input dimensions
@ -446,7 +536,7 @@ def filter_summary_records(log_entries):
filtered_log_entries = []
skipped_entry_count = 0
for line in log_entries:
if '`' in line[1]:
if '`' in line['MESSAGE']:
filtered_log_entries.append(line)
else:
skipped_entry_count += 1
@ -454,9 +544,9 @@ def filter_summary_records(log_entries):
def sort_log_entries(log_entries):
# Sort the records, based on the timestamp
sorted_entries = sorted(log_entries, key=lambda x: x[0])
sorted_entries = sorted(log_entries, key=lambda x: x['__REALTIME_TIMESTAMP'])
# and return a dictionary
sorted_dict = {entry[0]: entry[1] for entry in sorted_entries}
sorted_dict = {entry['__REALTIME_TIMESTAMP']: entry['MESSAGE'] for entry in sorted_entries}
return sorted_dict
def parse_data(data):
@ -464,10 +554,13 @@ def parse_data(data):
# Adjust the field names and parsing logic according to your data format.
# Split at the backtick - before it fields split at space, after, fields split at tab
parts = data.split('`')
fields0 = ["",""]
fields1 = parts[0].strip().split() if len(parts) > 0 else []
fields2 = parts[1].split('\t') if len(parts) > 1 else []
# then merge them
fields = fields1 + fields2
fields = fields0 + fields1 + fields2
print(f"{fields}")
#quit(1)
# if fields[4] == ''local'host':
# i = 0
# print(f"len:{len(fields)}")
@ -1073,8 +1166,10 @@ if __name__ == "__main__":
# Db save control
saveData = get_value(ConfigDB,"mailstats","SaveDataToMySQL","no") == 'yes' or forceDbSave
print(f"Save Mailstats to DB set:{saveData} ")
if saveData:
# Connect to MySQL DB for saving
DBName = "mailstats"
DBHost = get_value(ConfigDB, 'mailstats', 'DBHost', "localhost")
DBPort = int(get_value(ConfigDB, 'mailstats', 'DBPort', "3306")) # Ensure port is an integer
@ -1151,13 +1246,15 @@ if __name__ == "__main__":
num_hours = 25 # Represents hours from 0 to 23 - adds extra one for column totals and another for percentages
log_file = logs_dir+'current.log'
log_entries,skip_count,ignored_count = read_in_relevant_log_file(log_file,anaysis_date_obj)
print(f"Found {len(log_entries)} entries in log for for {anaysis_date_obj.strftime('%Y-%m-%d')} Ignored: {ignored_count} skipped: {skip_count}")
#log_file = logs_dir+'current.log'
#log_entries,skip_count,ignored_count = read_in_relevant_log_file(log_file,anaysis_date_obj)
log_entries = get_logs_from_Journalctl(analysis_date)
print(f"Found {len(log_entries)} entries in log for for {anaysis_date_obj.strftime('%Y-%m-%d')}") #Ignored: {ignored_count} skipped: {skip_count}")
summary_log_entries,skip_count = filter_summary_records(log_entries)
print(f"Found {len(summary_log_entries)} summary entries and skipped {skip_count} entries")
sorted_log_dict = sort_log_entries(summary_log_entries)
print(f"Sorted {len(sorted_log_dict)} entries")
#quit(1)
columnHeaders = ['Count','WebMail','Local','MailMan','Relay','DMARC','Virus','RBL/DNS','Geoip.','Non.Conf.','Karma','Rej.Load','Del.Spam','Qued.Spam?',' Ham','TOTALS','PERCENT']
# dict for each colum identifying plugin that increments count
@ -1497,7 +1594,7 @@ if __name__ == "__main__":
# Match initial connection message
IsInternal = True
try:
match = helo_pattern.match(data[1])
match = helo_pattern.match(data['MESSAGE'])
if match:
ip = match.group(1)
fqdn = match.group(2)
@ -1508,12 +1605,12 @@ if __name__ == "__main__":
IsInternal = False
continue
except Exception as e:
print(f" Helo pattern error {e} {data[1]} {analysis_date}")
print(f" Helo pattern error {e} {data['MESSAGE']} {analysis_date}")
continue
#Pull out Geoip countries for analysis table
try:
match = geoip_pattern.match(data[1])
match = geoip_pattern.match(data['MESSAGE'])
if match:
j += 1
country = match.group(1)
@ -1521,17 +1618,17 @@ if __name__ == "__main__":
total_countries += 1
continue
except Exception as e:
print(f"Geoip pattern error {e} {data[1]} {analysis_date}")
print(f"Geoip pattern error {e} {data['MESSAGE']} {analysis_date}")
continue
#Pull out DMARC approvals
match = dmarc_pattern.match(data[1])
match = dmarc_pattern.match(data['MESSAGE'])
if match:
DMARCOkCount += 1
continue
#Pull out type of connection
match = connect_type_pattern.match(data[1])
match = connect_type_pattern.match(data['MESSAGE'])
if match:
connection_type = match.group(1)
#print(f"ct:{connection_type}")
@ -1539,7 +1636,7 @@ if __name__ == "__main__":
#print(f"Count:{connection_type_counts[connection_type]}")
continue
match = tls_type_pattern.match(data[1])
match = tls_type_pattern.match(data['MESSAGE'])
if match:
connection_type = match.group(1)
#print(f"ct:{connection_type}")