Switch graphs to matplotlib which does not require internet access
This commit is contained in:
parent
4d29da7f3d
commit
da71021889
@ -10,6 +10,7 @@
|
||||
$OUT .="\n";
|
||||
$OUT .= qq(
|
||||
# Alias for mailstats
|
||||
Alias "/mailstats/js" "/opt/mailstats/js"
|
||||
Alias "/mailstats/css" "/opt/mailstats/css"
|
||||
Alias "/mailstats" "/opt/mailstats/html"
|
||||
|
||||
@ -29,6 +30,11 @@
|
||||
AllowOverride None
|
||||
Require all granted
|
||||
</Directory>
|
||||
|
||||
<Directory "/opt/mailstats/js">
|
||||
AllowOverride None
|
||||
Require all granted
|
||||
</Directory>
|
||||
);
|
||||
|
||||
}
|
||||
@ -36,5 +42,4 @@
|
||||
{
|
||||
$OUT .= "# mailstats is disabled";
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@ -201,4 +201,10 @@ p.cssvalid,p.htmlvalid {float:left;margin-right:20px}
|
||||
.Incoming, .Junk, .Geoip, .Qpsmtpd, .Viruses, .Blacklist{
|
||||
flex: 0 1 100%; /* 100% width for 1 column */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Taken from inline in the chameleon templates */
|
||||
.maindiv {width:100%;overflow-x:auto;font-size:1cqw}
|
||||
.traffictable {border-collapse:collapse;width:98%}
|
||||
.divseeinbrowser{text-align:center;}
|
||||
.bordercollapse{border-collapse:collapse;}
|
76
root/opt/mailstats/js/mailstats.js
Normal file
76
root/opt/mailstats/js/mailstats.js
Normal file
@ -0,0 +1,76 @@
|
||||
window.onload = function(){doNavs();}
|
||||
//function openTab(event, tabId){
|
||||
//// Get all elements with class="tab-content" and hide them
|
||||
//const tabContents = document.querySelectorAll('.tab-content');
|
||||
//tabContents.forEach(content => content.classList.remove('tab-content-active'));
|
||||
|
||||
//// Get all elements with class="tab" and remove the class "tab-active"
|
||||
//const tabs = document.querySelectorAll('.tab');
|
||||
//tabs.forEach(tab => tab.classList.remove('tab-active'));
|
||||
|
||||
//// Show the current tab content, and add an "active" class to the clicked tab
|
||||
//document.getElementById(tabId).classList.add('tab-content-active');
|
||||
//event.target.classList.add('tab-active');}
|
||||
|
||||
function LinkCheck(url){
|
||||
var http = new XMLHttpRequest();
|
||||
http.open('HEAD', url, false);
|
||||
http.send();
|
||||
return http.status!=404;
|
||||
}
|
||||
function doNavs() {
|
||||
var aTags = document.getElementsByTagName('a'),
|
||||
atl = aTags.length,i;
|
||||
for (i = 0; i < atl; i++) {
|
||||
if (aTags[i].innerText == "Previous") {
|
||||
if (!LinkCheck(aTags[i].href)) {
|
||||
aTags[i].style.visibility = "hidden";
|
||||
} else {
|
||||
aTags[i].style.visibility = "visible";
|
||||
}
|
||||
} else if (aTags[i].innerText == "Next") {
|
||||
if (!LinkCheck(aTags[i].href)) {
|
||||
aTags[i].style.visibility = "hidden";
|
||||
} else {
|
||||
aTags[i].style.visibility = "visible";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
function openTab(evt, tabName) {
|
||||
// Declare all variables
|
||||
var i, tab_content, tab;
|
||||
|
||||
// Get all elements with class="tab_content" and hide them
|
||||
tab_content = document.getElementsByClassName("tab-content");
|
||||
for (i = 0; i < tab_content.length; i++) {
|
||||
tab_content[i].style.display = "none";
|
||||
}
|
||||
|
||||
// Get all elements with class="tab" and remove the class "active"
|
||||
tab = document.getElementsByClassName("tab");
|
||||
for (i = 0; i < tab.length; i++) {
|
||||
tab[i].className = tab[i].className.replace(" tab-active", "");
|
||||
}
|
||||
|
||||
// Show the current tab, and add an "active" class to the link that opened the tab
|
||||
document.getElementById(tabName).style.display = "block";
|
||||
evt.currentTarget.className += " tab-active";
|
||||
|
||||
// Store the active tab index
|
||||
sessionStorage.setItem('activeTab', evt.currentTarget.getAttribute("data-index"));
|
||||
}
|
||||
|
||||
document.addEventListener("DOMContentLoaded", function() {
|
||||
// Attach click event handler for all divs with the class "tab"
|
||||
document.querySelectorAll(".tab").forEach(function(tab) {
|
||||
tab.addEventListener("click", function(event) {
|
||||
// Get the data-index attribute value
|
||||
const tabIndex = this.getAttribute("data-index");
|
||||
|
||||
// Dynamically call openTab with the correct tab parameter
|
||||
openTab(event, `tab${tabIndex}`);
|
||||
});
|
||||
});
|
||||
});
|
@ -6,7 +6,7 @@
|
||||
<tal:block condition="threshold == 0">
|
||||
<br>
|
||||
</tal:block>
|
||||
<table style="border-collapse:collapse;">
|
||||
<table class="bordercollapse">
|
||||
<thead>
|
||||
<tr>
|
||||
<th tal:repeat="header column_headers">${header}</th>
|
||||
|
@ -4,39 +4,10 @@
|
||||
<title>SMEServer Mailstats</title>
|
||||
<link rel='stylesheet' type='text/css' href='css/mailstats.css' />
|
||||
<!-- Check links -->
|
||||
<script>
|
||||
function LinkCheck(url){
|
||||
var http = new XMLHttpRequest();
|
||||
http.open('HEAD', url, false);
|
||||
http.send();
|
||||
return http.status!=404;
|
||||
}
|
||||
function doNavs() {
|
||||
var aTags = document.getElementsByTagName('a'),
|
||||
atl = aTags.length,i;
|
||||
for (i = 0; i < atl; i++) {
|
||||
if (aTags[i].innerText == "Previous") {
|
||||
if (!LinkCheck(aTags[i].href)) {
|
||||
aTags[i].style.visibility = "hidden";
|
||||
} else {
|
||||
aTags[i].style.visibility = "visible";
|
||||
}
|
||||
} else if (aTags[i].innerText == "Next") {
|
||||
if (!LinkCheck(aTags[i].href)) {
|
||||
aTags[i].style.visibility = "hidden";
|
||||
} else {
|
||||
aTags[i].style.visibility = "visible";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
</script>
|
||||
<style>
|
||||
<!--css here-->
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div style="width:100%;overflow-x:auto;font-size:1cqw">
|
||||
<div class=maindiv>
|
||||
<!---Navigation here-->
|
||||
<div class='linksattop'>
|
||||
<a class='prevlink' href='http://${SystemName}.${DomainName}/mailstats/mailstats_for_${PreviousDate}.html'>Previous</a>
|
||||
@ -54,127 +25,82 @@
|
||||
<br />
|
||||
<!--Tabs -->
|
||||
<div class="tab-container">
|
||||
<div class="tab tab-active" data-index="0" onclick="openTab(event, 'tab1')">Table</div>
|
||||
<div class="tab" data-index="1" onclick="openTab(event, 'tab2')">Stacked Bar Graph</div>
|
||||
<div class="tab" data-index="2" onclick="openTab(event, 'tab3')">Heat Map</div>
|
||||
<div class="tab" data-index="3" onclick="openTab(event, 'tab4')">Line Graph</div>
|
||||
<div class="tab tab-active" data-index="0" >Table</div>
|
||||
<div tal:condition="enable_graphs" class="tab" data-index="1">Line Graph</div>
|
||||
<div tal:condition="enable_graphs" class="tab" data-index="2">Stacked Bar Graph</div>
|
||||
<div tal:condition="enable_graphs" class="tab" data-index="3">Scatter Graph</div>
|
||||
<div tal:condition="enable_graphs" class="tab" data-index="4">Pie Chart</div>
|
||||
</div>
|
||||
|
||||
<div id="tab1" class="tab-content tab-content-active">
|
||||
<div class = "maintable">
|
||||
<table style="border-collapse:collapse;width:98%">
|
||||
<thead>
|
||||
<tr>
|
||||
<th>Date/Time</th>
|
||||
<th tal:repeat="header column_headers" tal:content="header">Header</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr tal:repeat="row array_2d" tal:attributes="class python: 'row-total' if repeat.row.index == 24 else 'row-percent' if repeat.row.index == 25 else None">
|
||||
<td tal:condition="repeat.row.index == 24" tal:attributes="class python:'col-total'" tal:content="'TOTALS'">Totals</td>
|
||||
<td tal:condition="repeat.row.index == 25" tal:attributes="class python:'col-percent'" tal:content="'PERCENT'">Percent</td>
|
||||
<td tal:condition="repeat.row.index < 24" tal:content="string:${reporting_date}, ${repeat.row.index}">Hour</td>
|
||||
<td tal:repeat="cell row" tal:attributes="class python: 'col-' + str(repeat.cell.index)">
|
||||
<!-- Check if 'nolinks' is true. If not, generate links for rows 0 to 23 except 'PERCENT' column -->
|
||||
<tal:case tal:condition="not: nolinks">
|
||||
<tal:case tal:condition="repeat.row.index >= 0 and repeat.row.index < 24 and repeat.cell.index != 16">
|
||||
<a tal:attributes="href string:./showSummaryLogs.php?date=${reporting_date}&hour=${repeat.row.index}">
|
||||
<!-- Check if cell value is zero and print "" -->
|
||||
<tal:case tal:condition="cell != 0" tal:content="cell">Cell</tal:case>
|
||||
<tal:case tal:condition="cell == 0" tal:content="''">-</tal:case>
|
||||
</a>
|
||||
</tal:case>
|
||||
<!-- For 'PERCENT' column or other rows, just display the cell content -->
|
||||
<tal:case tal:condition="not (repeat.row.index >= 0 and repeat.row.index < 24 and repeat.cell.index != 16)">
|
||||
<!-- Check if cell value is zero and print "" -->
|
||||
<tal:case tal:condition="cell != 0" tal:content="cell">Cell</tal:case>
|
||||
<tal:case tal:condition="cell == 0" tal:content="''">-</tal:case>
|
||||
</tal:case>
|
||||
</tal:case>
|
||||
<tal:case tal:condition="nolinks">
|
||||
<!-- Display cell content without link if 'nolinks' is true -->
|
||||
<tal:case tal:condition="cell != 0" tal:content="cell">Cell</tal:case>
|
||||
<tal:case tal:condition="cell == 0" tal:content="''">-</tal:case>
|
||||
</tal:case>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
<!-- Next Tab-->
|
||||
<div id="tab2" class="tab-content">
|
||||
<a href="stacked_bar_${reporting_date}.html">${structure: stacked_bar_graph}</a>
|
||||
</div>
|
||||
<!-- Next Tab-->
|
||||
<div id="tab3" class="tab-content">
|
||||
<a href="heatmap_${reporting_date}.html">${structure: heatmap}</a>
|
||||
</div>
|
||||
<!-- Next Tab-->
|
||||
<div id="tab4" class="tab-content">
|
||||
<a href="line_graph_${reporting_date}.html">${structure: line_graph}</a>
|
||||
<div id="tab0" class="tab-content tab-content-active">
|
||||
<div class = "maintable">
|
||||
<table class="traffictable">
|
||||
<thead>
|
||||
<tr>
|
||||
<th>Date/Time</th>
|
||||
<th tal:repeat="header column_headers" tal:content="header">Header</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr tal:repeat="row array_2d" tal:attributes="class python: 'row-total' if repeat.row.index == 24 else 'row-percent' if repeat.row.index == 25 else None">
|
||||
<td tal:condition="repeat.row.index == 24" tal:attributes="class python:'col-total'" tal:content="'TOTALS'">Totals</td>
|
||||
<td tal:condition="repeat.row.index == 25" tal:attributes="class python:'col-percent'" tal:content="'PERCENT'">Percent</td>
|
||||
<td tal:condition="repeat.row.index < 24" tal:content="string:${reporting_date}, ${repeat.row.index}">Hour</td>
|
||||
<td tal:repeat="cell row" tal:attributes="class python: 'col-' + str(repeat.cell.index)">
|
||||
<!-- Check if 'nolinks' is true. If not, generate links for rows 0 to 23 except 'PERCENT' column -->
|
||||
<tal:case tal:condition="not: nolinks">
|
||||
<tal:case tal:condition="repeat.row.index >= 0 and repeat.row.index < 24 and repeat.cell.index != 16">
|
||||
<a tal:attributes="href string:./showSummaryLogs.php?date=${reporting_date}&hour=${repeat.row.index}">
|
||||
<!-- Check if cell value is zero and print "" -->
|
||||
<tal:case tal:condition="cell != 0" tal:content="cell">Cell</tal:case>
|
||||
<tal:case tal:condition="cell == 0" tal:content="''">-</tal:case>
|
||||
</a>
|
||||
</tal:case>
|
||||
<!-- For 'PERCENT' column or other rows, just display the cell content -->
|
||||
<tal:case tal:condition="not (repeat.row.index >= 0 and repeat.row.index < 24 and repeat.cell.index != 16)">
|
||||
<!-- Check if cell value is zero and print "" -->
|
||||
<tal:case tal:condition="cell != 0" tal:content="cell">Cell</tal:case>
|
||||
<tal:case tal:condition="cell == 0" tal:content="''">-</tal:case>
|
||||
</tal:case>
|
||||
</tal:case>
|
||||
<tal:case tal:condition="nolinks">
|
||||
<!-- Display cell content without link if 'nolinks' is true -->
|
||||
<tal:case tal:condition="cell != 0" tal:content="cell">Cell</tal:case>
|
||||
<tal:case tal:condition="cell == 0" tal:content="''">-</tal:case>
|
||||
</tal:case>
|
||||
</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
<div class = "subtables">
|
||||
<div class="table-container">
|
||||
<!---Add in sub tables here -->
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class = "subtables">
|
||||
<div class="table-container">
|
||||
<!---Add in sub tables here -->
|
||||
</div>
|
||||
</div>
|
||||
<br />
|
||||
|
||||
<!-- Next Tab-->
|
||||
<div tal:condition="enable_graphs" id="tab1" class="tab-content">
|
||||
<img src="line_graph_${reporting_date}.png">
|
||||
</div>
|
||||
<!-- Next Tab-->
|
||||
<div tal:condition="enable_graphs" id="tab2" class="tab-content">
|
||||
<img src="bar_graph_${reporting_date}.png">
|
||||
</div>
|
||||
<!-- Next Tab-->
|
||||
<div tal:condition="enable_graphs" id="tab3" class="tab-content">
|
||||
<img src="scatter_graph_${reporting_date}.png">
|
||||
</div>
|
||||
<!-- Next Tab-->
|
||||
<div tal:condition="enable_graphs" id="tab4" class="tab-content">
|
||||
<img src="pie_chart_${reporting_date}.png">
|
||||
</div>
|
||||
<br />
|
||||
|
||||
<footer class="footer">${version}</footer>
|
||||
|
||||
<script>
|
||||
window.onload = function(){doNavs();}
|
||||
//function openTab(event, tabId){
|
||||
//// Get all elements with class="tab-content" and hide them
|
||||
//const tabContents = document.querySelectorAll('.tab-content');
|
||||
//tabContents.forEach(content => content.classList.remove('tab-content-active'));
|
||||
|
||||
//// Get all elements with class="tab" and remove the class "tab-active"
|
||||
//const tabs = document.querySelectorAll('.tab');
|
||||
//tabs.forEach(tab => tab.classList.remove('tab-active'));
|
||||
|
||||
//// Show the current tab content, and add an "active" class to the clicked tab
|
||||
//document.getElementById(tabId).classList.add('tab-content-active');
|
||||
//event.target.classList.add('tab-active');}
|
||||
|
||||
function openTab(evt, tabName) {
|
||||
// Declare all variables
|
||||
var i, tab_content, tab;
|
||||
|
||||
// Get all elements with class="tab_content" and hide them
|
||||
tab_content = document.getElementsByClassName("tab-content");
|
||||
for (i = 0; i < tab_content.length; i++) {
|
||||
tab_content[i].style.display = "none";
|
||||
}
|
||||
|
||||
// Get all elements with class="tab" and remove the class "active"
|
||||
tab = document.getElementsByClassName("tab");
|
||||
for (i = 0; i < tab.length; i++) {
|
||||
tab[i].className = tab[i].className.replace(" tab-active", "");
|
||||
}
|
||||
|
||||
// Show the current tab, and add an "active" class to the link that opened the tab
|
||||
document.getElementById(tabName).style.display = "block";
|
||||
evt.currentTarget.className += " tab-active";
|
||||
|
||||
// Store the active tab index
|
||||
sessionStorage.setItem('activeTab', evt.currentTarget.getAttribute("data-index"));
|
||||
}
|
||||
|
||||
document.addEventListener("DOMContentLoaded", function() {
|
||||
// Get the stored tab index from sessionStorage
|
||||
let activeTab = sessionStorage.getItem('activeTab');
|
||||
|
||||
// If there's a stored tab, show that tab
|
||||
if (activeTab !== null) {
|
||||
document.querySelector(`[data-index="$${activeTab}"]`).click();
|
||||
}
|
||||
});
|
||||
|
||||
|
||||
</script>
|
||||
<script type='text/javascript' src='js/mailstats.js' ></script>
|
||||
|
||||
<!--
|
||||
<p class="cssvalid">
|
||||
|
@ -56,14 +56,15 @@
|
||||
# pip3 install numpy
|
||||
# pip3 install plotly
|
||||
# pip3 install pandas
|
||||
# pip3 install matplotlib
|
||||
#
|
||||
# Rocky8: (probably - not yet checked this)
|
||||
#
|
||||
# dnf install python3-chameleon --enablerepo=epel
|
||||
# dnf install html2text --enablerepo=epel
|
||||
# dnf install python3-matplotlib
|
||||
# pip3 install numpy
|
||||
# pip3 pymysql
|
||||
# pip3 install plotly
|
||||
# pip3 install pandas
|
||||
#
|
||||
#
|
||||
@ -89,6 +90,12 @@ import plotly.express as px
|
||||
import colorsys
|
||||
import pymysql
|
||||
import json
|
||||
enable_graphs = True;
|
||||
try:
|
||||
import matplotlib.pyplot as plt
|
||||
except ImportError:
|
||||
print("Matplotlib is not installed - no graphs")
|
||||
enable_graphs = False;
|
||||
|
||||
Mailstats_version = '1.2'
|
||||
build_date_time = "2024-06-18 12:03:40OURCE"
|
||||
@ -129,251 +136,145 @@ PERCENT = TOTALS + 1
|
||||
ColTotals = 24
|
||||
ColPercent = 25
|
||||
|
||||
|
||||
def sanitize_and_filter_data_for_stacked_bar(data2d, xLabels, yLabels, exclude_columns_labels, exclude_rows_labels):
|
||||
def transform_to_dict(data, keys, iso_date):
|
||||
"""
|
||||
Sanitize data by removing unwanted columns and rows, and converting to numeric values.
|
||||
|
||||
Parameters:
|
||||
- data2d (list of lists): A 2D list containing the data.
|
||||
- xLabels (list): Current labels for the x-axis.
|
||||
- yLabels (list): Current labels for the y-axis.
|
||||
- exclude_columns_labels (list): Labels of columns to exclude from the data and x-axis.
|
||||
- exclude_rows_labels (list): Labels of rows to exclude from the y-axis.
|
||||
|
||||
Transforms a 26x17 list of lists into a list of dictionaries with specified keys.
|
||||
|
||||
Args:
|
||||
data (list): A 26x17 list of lists.
|
||||
keys (list): A 1D array specifying the keys for the dictionaries.
|
||||
iso_date (str): A date in ISO format to prepend to each row number.
|
||||
|
||||
Returns:
|
||||
- numpy.ndarray: Sanitized 2D numpy array with numeric data.
|
||||
- list: Filtered x-axis labels.
|
||||
- list: Filtered y-axis labels.
|
||||
list: A list of dictionaries with transformed data.
|
||||
"""
|
||||
def to_numeric(value):
|
||||
try:
|
||||
if isinstance(value, str):
|
||||
# Remove any extra characters like '%' and convert to float
|
||||
return float(value.replace('%', '').strip())
|
||||
else:
|
||||
return float(value)
|
||||
except ValueError:
|
||||
return 0.0 # Default to 0 if conversion fails
|
||||
|
||||
# Filter out columns based on their labels
|
||||
exclude_columns_indices = [xLabels.index(label) for label in exclude_columns_labels if label in xLabels]
|
||||
# Validate input dimensions
|
||||
if len(data) != 26:
|
||||
raise ValueError("Input data must have 26 rows.")
|
||||
if len(keys) != len(data[0]): # Account for the new column
|
||||
raise ValueError(f"Keys must match the number of columns after transformation {len(keys)} {len(data[0])}")
|
||||
|
||||
filtered_data2d = [
|
||||
[to_numeric(value) for idx, value in enumerate(row) if idx not in exclude_columns_indices]
|
||||
for row in data2d
|
||||
]
|
||||
# Remove rows 25 and 26
|
||||
filtered_data = data[:24]
|
||||
|
||||
filtered_xLabels = [label for idx, label in enumerate(xLabels) if idx not in exclude_columns_indices]
|
||||
|
||||
# Filter out rows based on their labels
|
||||
filtered_data2d = [row for label, row in zip(yLabels, filtered_data2d) if label not in exclude_rows_labels]
|
||||
filtered_yLabels = [label for label in yLabels if label not in exclude_rows_labels]
|
||||
|
||||
# Convert filtered data to numpy array
|
||||
return np.array(filtered_data2d), filtered_xLabels, filtered_yLabels
|
||||
|
||||
def generate_distinct_colors(num_colors):
|
||||
"""Generate distinct colors using HSV color space."""
|
||||
colors = []
|
||||
for i in range(num_colors):
|
||||
hue = i / num_colors
|
||||
saturation = 0.7
|
||||
value = 0.9
|
||||
r, g, b = colorsys.hsv_to_rgb(hue, saturation, value)
|
||||
colors.append(f'rgb({int(r * 255)},{int(g * 255)},{int(b * 255)})')
|
||||
return colors
|
||||
# and same for keys
|
||||
modified_keys = keys[1:-2]
|
||||
|
||||
def create_stacked_bar_graph(data2d, xLabels, yLabels, save_path='stacked_bar_graph.html'):
|
||||
"""
|
||||
Creates and saves a stacked bar graph from given 2D numpy array data using Plotly.
|
||||
|
||||
Parameters:
|
||||
- data2d (list of lists or numpy.ndarray): A 2D list or numpy array containing the data.
|
||||
- xLabels (list): A list of category labels for the x-axis.
|
||||
- yLabels (list): A list of labels for the y-axis (e.g., hours).
|
||||
- save_path (str): The path where the plot image will be saved.
|
||||
"""
|
||||
# Identify columns to be removed based on their headers (label names) and indices (hours 24 and 25)
|
||||
exclude_columns_labels = ["Count", "PERCENT","TOTALS"]
|
||||
exclude_rows_labels = ["24:00", "25:00"]
|
||||
# Add new column with ISO date and row number
|
||||
transformed_data = []
|
||||
for i, row in enumerate(filtered_data):
|
||||
new_column_value = f"{i}" #f"{iso_date},{i}"
|
||||
transformed_row = [new_column_value] + row[1:-2] # Remove first and last two columns
|
||||
transformed_data.append(transformed_row)
|
||||
|
||||
# Ensure input yLabels correspond to the data
|
||||
if len(yLabels) != len(data2d):
|
||||
raise ValueError(f"The length of yLabels {len(yLabels)} must match the number of rows in the data {len(data2d)}.")
|
||||
|
||||
# Sanitize and filter the data
|
||||
sanitized_data, filtered_xLabels, filtered_yLabels = sanitize_and_filter_data_for_stacked_bar(data2d, xLabels, yLabels, exclude_columns_labels, exclude_rows_labels)
|
||||
|
||||
# Ensure that the length of yLabels matches the number of rows (0 to n should be n+1 rows)
|
||||
if len(filtered_yLabels) != sanitized_data.shape[0]:
|
||||
raise ValueError(f"The length of filtered_yLabels {len(filtered_yLabels)} must match the number of rows in the data {sanitized_data.shape[0]}.")
|
||||
|
||||
# Transpose the data so that hours are on the x-axis and categories are stacked in the y-axis
|
||||
transposed_data = sanitized_data.T
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
# Get unique colors for each category
|
||||
extended_colors = generate_distinct_colors(len(filtered_xLabels))
|
||||
|
||||
for i, category in enumerate(filtered_xLabels):
|
||||
fig.add_trace(go.Bar(
|
||||
name=category,
|
||||
x=filtered_yLabels,
|
||||
y=transposed_data[i],
|
||||
marker_color=extended_colors[i % len(extended_colors)] # Cycle through the colors if there are more categories than colors
|
||||
# Convert each row into a dictionary using supplied keys
|
||||
result = [dict(zip(["Time"] + modified_keys, row)) for row in transformed_data]
|
||||
|
||||
))
|
||||
|
||||
fig.update_layout(
|
||||
barmode='stack',
|
||||
title='Stacked Bar Graph by Hour',
|
||||
xaxis=dict(title='Hour'),
|
||||
yaxis=dict(title='Values'),
|
||||
legend_title_text='Categories',
|
||||
margin = {
|
||||
'l': 50, #left margin
|
||||
'r': 120, #right margin
|
||||
't': 50, #top margin
|
||||
'b': 50 #bottom margin
|
||||
}
|
||||
|
||||
)
|
||||
|
||||
# Save the graph to an HTML file
|
||||
fig.write_html(save_path)
|
||||
# Write it to a var and return the string
|
||||
graph_html = fig.to_html(full_html=False,include_plotlyjs='https://cdn.plot.ly/plotly-latest.min.js')
|
||||
return graph_html
|
||||
|
||||
def sanitize_and_filter_data(data2d, exclude_labels, xLabels):
|
||||
"""
|
||||
Sanitize data by removing unwanted columns and converting to numeric values.
|
||||
|
||||
Parameters:
|
||||
- data2d (list of lists): A 2D list containing the data.
|
||||
- exclude_labels (list): Labels to exclude from the data and x-axis.
|
||||
- xLabels (list): Current labels for the x-axis.
|
||||
|
||||
Returns:
|
||||
- numpy.ndarray: Sanitized 2D numpy array with numeric data.
|
||||
- list: Filtered x-axis labels.
|
||||
"""
|
||||
def to_numeric(value):
|
||||
try:
|
||||
if isinstance(value, str):
|
||||
# Remove any extra characters like '%' and convert to float
|
||||
return float(value.replace('%', '').strip())
|
||||
else:
|
||||
return float(value)
|
||||
except ValueError:
|
||||
return 0.0 # Default to 0 if conversion fails
|
||||
return result
|
||||
|
||||
# Create a boolean array for columns to keep (not in exclude_labels)
|
||||
columns_to_keep = [label not in exclude_labels for label in xLabels]
|
||||
|
||||
# Filter out the columns both from the data and xLabels
|
||||
filtered_data2d = []
|
||||
for row in data2d:
|
||||
filtered_row = [to_numeric(value) for keep, value in zip(columns_to_keep, row) if keep]
|
||||
filtered_data2d.append(filtered_row)
|
||||
def create_graph(data_dict, graph_type="line", output_file="graph.png",iso_date='1970-01-01'):
|
||||
"""
|
||||
Creates a graph from nested list data with hours as x-axis.
|
||||
|
||||
filtered_xLabels = [label for label, keep in zip(xLabels, columns_to_keep) if keep]
|
||||
Args:
|
||||
data_dict (list): List structure where:
|
||||
- Each element is a list representing hour data
|
||||
- First element is the hour (0-23)
|
||||
- Remaining elements are counts for different types/categories
|
||||
graph_type (str): Type of graph to create ("line", "bar", "scatter", "pie").
|
||||
output_file (str): Path to save the image file.
|
||||
"""
|
||||
# Check if data is empty
|
||||
if not data_dict:
|
||||
raise ValueError("Input data cannot be empty")
|
||||
|
||||
return np.array(filtered_data2d), filtered_xLabels
|
||||
# Extract hours (from the "NewColumn" key)
|
||||
hours = [row["Time"] for row in data_dict] # First column is the ISO date + row number
|
||||
|
||||
def create_heatmap(data2d, xLabels, yLabels, save_path='heatmap.html'):
|
||||
"""
|
||||
Creates and saves a heatmap from given 2D numpy array data using Plotly.
|
||||
Parameters:
|
||||
- data2d (list of lists or numpy.ndarray): A 2D list or numpy array containing the data.
|
||||
- xLabels (list): A list of category labels for the x-axis.
|
||||
- yLabels (list): A list of labels for the y-axis (e.g., hours).
|
||||
- save_path (str): The path where the plot image will be saved.
|
||||
"""
|
||||
excluded_columns = ["Count", "PERCENT", "TOTALS"]
|
||||
# Remove rows 24 and 25 by slicing the data and labels
|
||||
data2d = data2d[:24]
|
||||
yLabels = yLabels[:24] # Ensure yLabels also excludes those rows
|
||||
# Extract types (keys excluding "NewColumn")
|
||||
types = [key for key in data_dict[0].keys() if key != "Time"] # Dynamically get keys except "NewColumn"
|
||||
|
||||
# Sanitize and filter the data
|
||||
sanitized_data, filtered_xLabels = sanitize_and_filter_data(data2d, excluded_columns, xLabels)
|
||||
# Extract counts for each type
|
||||
counts = {typ: [row[typ] for row in data_dict] for typ in types}
|
||||
|
||||
# Ensure that the length of yLabels matches the number of rows (0 to n should be n+1 rows)
|
||||
if len(yLabels) != sanitized_data.shape[0]:
|
||||
raise ValueError("The length of yLabels must match the number of rows in the data.")
|
||||
plt.figure(figsize=(10, 6)) # Create a figure
|
||||
|
||||
# Create the heatmap
|
||||
# Define a custom color scale where 0 is white
|
||||
color_scale = [
|
||||
[0, "lightgrey"],
|
||||
[0.3, "blue"],
|
||||
[0.6, 'green'],
|
||||
[0.75,'yellow'],
|
||||
[1,'red']
|
||||
]
|
||||
fig = px.imshow(sanitized_data,
|
||||
labels=dict(x="Category", y="Hour", color="Count"),
|
||||
x=filtered_xLabels,
|
||||
y=yLabels,
|
||||
color_continuous_scale=color_scale)
|
||||
|
||||
fig.update_layout(
|
||||
title='Heatmap of Counts by Category per Hour',
|
||||
xaxis_nticks=len(filtered_xLabels),
|
||||
yaxis_nticks=len(yLabels),
|
||||
margin=dict(l=0, r=0, t=30, b=0)
|
||||
# Generate different types of graphs based on the input parameter
|
||||
if graph_type == "line":
|
||||
for typ in types:
|
||||
plt.plot(hours, counts[typ], label=typ, marker='o')
|
||||
plt.title(f"Line Graph for {iso_date}")
|
||||
plt.xlabel("Hours")
|
||||
plt.ylabel("Counts")
|
||||
|
||||
)
|
||||
fig.update_xaxes(showticklabels=True, side='bottom', showline=True, linewidth=2, linecolor='black', mirror=True)
|
||||
fig.update_yaxes(showticklabels=True, showline=True, linewidth=2, linecolor='black', mirror=True)
|
||||
|
||||
fig.write_html(save_path)
|
||||
# Write it to a var and return the string
|
||||
graph_html = fig.to_html(full_html=False,include_plotlyjs='https://cdn.plot.ly/plotly-latest.min.js')
|
||||
return graph_html
|
||||
|
||||
|
||||
def create_line_chart(data2d, xLabels, yLabels, save_path='line_chart.html'):
|
||||
fig = go.Figure()
|
||||
|
||||
excluded_columns = ["Count", "PERCENT", "TOTALS"]
|
||||
# Remove rows 24 and 25 by slicing the data and labels
|
||||
data2d = data2d[:24]
|
||||
yLabels = yLabels[:24] # Ensure yLabels also excludes those rows
|
||||
elif graph_type == "bar":
|
||||
bottom = [0] * len(hours)
|
||||
for typ in types:
|
||||
plt.bar(hours, counts[typ], bottom=bottom, label=typ)
|
||||
bottom = [b + y for b, y in zip(bottom, counts[typ])]
|
||||
plt.title(f"Bar Graph for {iso_date}")
|
||||
plt.xlabel("Hours")
|
||||
plt.ylabel("Counts")
|
||||
|
||||
# Sanitize and filter the data
|
||||
sanitized_data, filtered_xLabels = sanitize_and_filter_data(data2d, excluded_columns, xLabels)
|
||||
elif graph_type == "scatter":
|
||||
for typ in types:
|
||||
plt.scatter(hours, counts[typ], label=typ)
|
||||
plt.title(f"Scatter Plot for {iso_date}")
|
||||
plt.xlabel("Hours")
|
||||
plt.ylabel("Counts")
|
||||
|
||||
# Ensure that the length of yLabels matches the number of rows (0 to n should be n+1 rows)
|
||||
if len(yLabels) != sanitized_data.shape[0]:
|
||||
raise ValueError("The length of yLabels must match the number of rows in the data.")
|
||||
elif graph_type == "pie":
|
||||
total_counts = {typ: sum(counts[typ]) for typ in types}
|
||||
total_sum = sum(total_counts.values())
|
||||
threshold_percent = 0.01 * total_sum
|
||||
|
||||
# Remove rows with all zero elements and the corresponding categories
|
||||
nonzero_rows_indices = np.where(~np.all(sanitized_data == 0, axis=0))[0] # find rows with non-zero elements
|
||||
sanitized_data = sanitized_data[:, nonzero_rows_indices]
|
||||
filtered_xLabels = [filtered_xLabels[i] for i in nonzero_rows_indices] # update filtered_xLabels
|
||||
# Separate filtered counts and "Other" counts
|
||||
filtered_counts = {}
|
||||
other_total = 0
|
||||
|
||||
for i, category in enumerate(filtered_xLabels):
|
||||
fig.add_trace(go.Scatter(
|
||||
mode='lines+markers',
|
||||
name=category,
|
||||
x= [f'{j:02d}:00' for j in range(sanitized_data.shape[0])],
|
||||
y=sanitized_data[:, i]
|
||||
))
|
||||
for typ, value in total_counts.items():
|
||||
if value > 0 and value >= threshold_percent:
|
||||
filtered_counts[typ] = value
|
||||
else:
|
||||
other_total += value
|
||||
|
||||
fig.update_layout(
|
||||
title='Line Chart of Counts by Category per Hour',
|
||||
xaxis=dict(title='Hour'),
|
||||
yaxis=dict(title='Count'),
|
||||
legend_title_text='Category'
|
||||
)
|
||||
|
||||
fig.write_html(save_path)
|
||||
# Write it to a var and return the string
|
||||
graph_html = fig.to_html(full_html=False,include_plotlyjs='https://cdn.plot.ly/plotly-latest.min.js')
|
||||
return graph_html
|
||||
# Add "Other" category if there are values below the threshold
|
||||
if other_total > 0:
|
||||
filtered_counts["Other"] = other_total
|
||||
|
||||
# Prepare data for the pie chart
|
||||
labels = filtered_counts.keys()
|
||||
sizes = filtered_counts.values()
|
||||
|
||||
# Plot the pie chart
|
||||
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
|
||||
plt.title(f"Pie Chart for {iso_date}")
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unsupported graph type: {graph_type}")
|
||||
|
||||
if graph_type != "pie":
|
||||
plt.xticks(hours)
|
||||
plt.grid(alpha=0.3)
|
||||
plt.legend()
|
||||
|
||||
# Save the graph to a file
|
||||
plt.tight_layout()
|
||||
plt.savefig(output_file)
|
||||
plt.close()
|
||||
|
||||
# def convert_to_numeric(data):
|
||||
# """
|
||||
# Converts all values in a nested list or dictionary to numeric types (int or float).
|
||||
# """
|
||||
# for i in range(len(data)):
|
||||
# for j in range(1, len(data[i])): # Skip the first column (hour)
|
||||
# try:
|
||||
# data[i][j] = float(data[i][j]) # Convert to float
|
||||
# except ValueError:
|
||||
# raise ValueError(f"Non-numeric value found: {data[i][j]}")
|
||||
# return data
|
||||
|
||||
def save_summaries_to_db(cursor, conn, date_str, hour, parsed_data):
|
||||
# Convert parsed_data to JSON string
|
||||
@ -529,6 +430,8 @@ def read_in_relevant_log_file(file_path,analysis_date=yesterday):
|
||||
timestamp = timestamp.replace(year=yesterday_year)
|
||||
except (ValueError, TypeError) as e:
|
||||
print(f"Error {e} line {line_count} on timestamp extract {timestamp_str}:{entry[1]}")
|
||||
ignore_record_count += 1
|
||||
continue
|
||||
#print(f"Stamps: {timestamp.date()} {analysis_date.date()}")
|
||||
if timestamp.date() == analysis_date.date():
|
||||
log_entries.append((timestamp, entry[1]))
|
||||
@ -571,7 +474,7 @@ def parse_data(data):
|
||||
# for part in fields:
|
||||
# print(f"{i}: {part}")
|
||||
# i = i +1
|
||||
# quit()
|
||||
# (quit)()
|
||||
# and mapping:
|
||||
try:
|
||||
return_dict = {
|
||||
@ -861,7 +764,7 @@ def read_html_from_file(filepath):
|
||||
# Read in CSS
|
||||
with open(css_path, 'r', encoding='utf-8') as file:
|
||||
css_contents = file.read()
|
||||
html_contents = insert_string_after(html_contents,"\n"+css_contents,"<!--css here-->")
|
||||
html_contents = insert_string_after(html_contents,"\n<style>"+css_contents+"</style>","<!--css here-->")
|
||||
return html_contents
|
||||
|
||||
def read_text_from_file(filepath):
|
||||
@ -1643,7 +1546,7 @@ if __name__ == "__main__":
|
||||
connection_type_counts[connection_type] += 1
|
||||
#print(f"Count:{connection_type_counts[connection_type]}")
|
||||
continue
|
||||
|
||||
|
||||
|
||||
#Compute next and previous dates
|
||||
day_format = "%Y-%m-%d"
|
||||
@ -1658,10 +1561,27 @@ if __name__ == "__main__":
|
||||
previous_date_str = previous_date.strftime(day_format)
|
||||
|
||||
# Create graphs of data
|
||||
yLabels = [f'{i:02d}:00' for i in range(len(columnCounts_2d))]
|
||||
stacked_Bar_html = create_stacked_bar_graph(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'stacked_bar_'+analysis_date+'.html')
|
||||
heatmap_html = create_heatmap(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'heatmap_'+analysis_date+'.html')
|
||||
line_graph_html = create_line_chart(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'line_graph_'+analysis_date+'.html')
|
||||
|
||||
# yLabels = [f'{i:02d}:00' for i in range(len(columnCounts_2d))]
|
||||
# stacked_Bar_html = create_stacked_bar_graph(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'stacked_bar_'+analysis_date+'.html')
|
||||
# heatmap_html = create_heatmap(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'heatmap_'+analysis_date+'.html')
|
||||
# line_graph_html = create_line_chart(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'line_graph_'+analysis_date+'.html')
|
||||
|
||||
columnCounts_2d_dict = transform_to_dict(columnCounts_2d,columnHeaders,analysis_date)
|
||||
|
||||
#Export as json for testing
|
||||
# with open("/opt/mailstats/html/colCounts_2d.json", "w") as json_file:
|
||||
# json.dump(columnCounts_2d, json_file)
|
||||
# with open("/opt/mailstats/html/colCounts_2d-dict", "w") as json_file:
|
||||
# json.dump(columnCounts_2d_dict, json_file)
|
||||
# with open("/opt/mailstats/html/keys.json", "w") as json_file:
|
||||
# json.dump(columnHeaders, json_file)
|
||||
|
||||
if enable_graphs:
|
||||
create_graph(columnCounts_2d_dict, "line", html_page_dir+"line_graph_"+analysis_date+".png",analysis_date)
|
||||
create_graph(columnCounts_2d_dict, "bar", html_page_dir+"bar_graph_"+analysis_date+".png",analysis_date)
|
||||
create_graph(columnCounts_2d_dict, "scatter", html_page_dir+"scatter_graph_"+analysis_date+".png",analysis_date)
|
||||
create_graph(columnCounts_2d_dict, "pie", html_page_dir+"pie_chart_"+analysis_date+".png",analysis_date)
|
||||
|
||||
#Now apply the results to the chameleon template - main table
|
||||
# Path to the template file
|
||||
@ -1682,13 +1602,11 @@ if __name__ == "__main__":
|
||||
reporting_date=analysis_date, title=html_title,
|
||||
version=version_string,
|
||||
nolinks=nolinks,
|
||||
stacked_bar_graph=stacked_Bar_html,
|
||||
heatmap=heatmap_html,
|
||||
line_graph=line_graph_html,
|
||||
PreviousDate=previous_date_str,
|
||||
NextDate=next_date_str,
|
||||
DomainName=DomainName,
|
||||
SystemName=SystemName
|
||||
SystemName=SystemName,
|
||||
enable_graphs=enable_graphs
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Chameleon template Exception {e}")
|
||||
@ -1785,7 +1703,7 @@ if __name__ == "__main__":
|
||||
filepath = html_page_dir+"mailstats_for_"+analysis_date+".html"
|
||||
html_content = read_html_from_file(filepath)
|
||||
# Replace the Navigation by a "See in browser" prompt
|
||||
replace_str = f"<div class='divseeinbrowser' style='text-align:center;'><a class='seeinbrowser' href='http://{SystemName}.{DomainName}/mailstats/mailstats_for_{analysis_date}.html'>See in browser</a></div>"
|
||||
replace_str = f"<div class='divseeinbrowser'><a class='seeinbrowser' href='http://{SystemName}.{DomainName}/mailstats/mailstats_for_{analysis_date}.html'>See in browser</a></div>"
|
||||
html_content = replace_between(html_content, "<div class='linksattop'>", ">Next</a></div>", replace_str)
|
||||
if not noemailfile:
|
||||
# Write out the email html to a web page
|
||||
|
@ -21,9 +21,10 @@ BuildRequires: e-smith-devtools >= 1.13.1-03
|
||||
Requires: perl-Switch
|
||||
BuildRequires: python36
|
||||
Requires: python36
|
||||
Requires: html2text
|
||||
Requires: python3-chameleon
|
||||
Requires: html2text
|
||||
Requires: python3-chameleon
|
||||
Requires: python3-mysql
|
||||
Requires: python3-matplotlib
|
||||
AutoReqProv: no
|
||||
|
||||
%description
|
||||
@ -126,7 +127,6 @@ sed -i "s|__BUILD_DATE_TIME__|$now|" $RPM_BUILD_ROOT/usr/bin/mailstats.py
|
||||
%pre
|
||||
/usr/bin/pip3 install -q pymysql
|
||||
/usr/bin/pip3 install -q numpy
|
||||
/usr/bin/pip3 install -q plotly
|
||||
/usr/bin/pip3 install -q pandas
|
||||
|
||||
%clean
|
||||
|
Loading…
x
Reference in New Issue
Block a user