derive graphs from main table
This commit is contained in:
parent
ddcde8fa07
commit
e014d91060
@ -53,6 +53,9 @@
|
||||
# yum install html2text --enablerepo=epel
|
||||
# yum install mysql-connector-python --enablerepo=epel (not sure if this is required as well the pip3))
|
||||
# pip3 install mysql-connector
|
||||
# pip3 install numpy
|
||||
# pip3 install plotly
|
||||
# pip3 install pandas
|
||||
#
|
||||
# Rocky8: (probably - not yet checked this)
|
||||
#
|
||||
@ -76,6 +79,9 @@ import codecs
|
||||
import argparse
|
||||
import tempfile
|
||||
import mysql.connector
|
||||
import numpy as np
|
||||
import plotly.graph_objects as go
|
||||
import plotly.express as px
|
||||
|
||||
Mailstats_version = '1.2'
|
||||
build_date_time = "2024-06-18 12:03:40OURCE"
|
||||
@ -119,6 +125,205 @@ ColPercent = 25
|
||||
import mysql.connector
|
||||
import json
|
||||
|
||||
def sanitize_data(data2d):
|
||||
"""
|
||||
Convert data to numeric values, stripping out non-numeric characters.
|
||||
|
||||
Parameters:
|
||||
- data2d (list of lists): A 2D list containing the data.
|
||||
|
||||
Returns:
|
||||
- numpy.ndarray: Sanitized 2D numpy array with numeric data.
|
||||
"""
|
||||
def to_numeric(value):
|
||||
try:
|
||||
if isinstance(value, str):
|
||||
# Remove any extra characters like '%' and convert to float
|
||||
return float(value.replace('%', '').strip())
|
||||
else:
|
||||
return float(value)
|
||||
except ValueError:
|
||||
return 0.0 # Default to 0 if conversion fails
|
||||
|
||||
sanitized_data = []
|
||||
for row in data2d:
|
||||
sanitized_row = [to_numeric(value) for value in row]
|
||||
sanitized_data.append(sanitized_row)
|
||||
|
||||
return np.array(sanitized_data)
|
||||
|
||||
def create_stacked_bar_graph(data2d, xLabels, save_path='stacked_bar_graph.html'):
|
||||
"""
|
||||
Creates and saves a stacked bar graph from given 2D numpy array data using Plotly.
|
||||
|
||||
Parameters:
|
||||
- data2d (list of lists or numpy.ndarray): A 2D list or numpy array containing the data.
|
||||
- xLabels (list): A list of category labels for the x-axis.
|
||||
- save_path (str): The path where the plot image will be saved.
|
||||
"""
|
||||
# Identify columns to be removed based on their headers
|
||||
excluded_columns = ["Count", "PERCENT"]
|
||||
|
||||
# Create a boolean array for columns to keep (not in excluded_columns)
|
||||
columns_to_keep = [label not in excluded_columns for label in xLabels]
|
||||
|
||||
# Filter out the columns both from the data and xLabels
|
||||
filtered_data2d = []
|
||||
for row in data2d:
|
||||
filtered_row = [value for keep, value in zip(columns_to_keep, row) if keep]
|
||||
filtered_data2d.append(filtered_row)
|
||||
|
||||
filtered_xLabels = [label for label, keep in zip(xLabels, columns_to_keep) if keep]
|
||||
|
||||
# Sanitize data and convert it to a numpy array
|
||||
data = sanitize_data(filtered_data2d)
|
||||
|
||||
# Find columns that are not fully zero
|
||||
non_zero_columns = np.any(data != 0, axis=0)
|
||||
|
||||
# Filter out fully zero columns from both the data and x_labels
|
||||
filtered_data = data[:, non_zero_columns]
|
||||
filtered_x_labels = np.array(filtered_xLabels)[non_zero_columns]
|
||||
|
||||
fig = go.Figure()
|
||||
|
||||
for i in range(filtered_data.shape[0]):
|
||||
if i <= 23: # Ensure to annotate rows with proper names (e.g., Hours)
|
||||
fig.add_trace(go.Bar(
|
||||
name=f'Hour {i}',
|
||||
x=filtered_x_labels,
|
||||
y=filtered_data[i]
|
||||
))
|
||||
|
||||
fig.update_layout(
|
||||
barmode='stack',
|
||||
title='Stacked Bar Graph Example',
|
||||
xaxis=dict(title='Category'),
|
||||
yaxis=dict(title='Values'),
|
||||
legend_title_text='Rows'
|
||||
)
|
||||
|
||||
# Save the graph to an HTML file
|
||||
fig.write_html(save_path)
|
||||
|
||||
def sanitize_and_filter_data(data2d, exclude_labels, xLabels):
|
||||
"""
|
||||
Sanitize data by removing unwanted columns and converting to numeric values.
|
||||
|
||||
Parameters:
|
||||
- data2d (list of lists): A 2D list containing the data.
|
||||
- exclude_labels (list): Labels to exclude from the data and x-axis.
|
||||
- xLabels (list): Current labels for the x-axis.
|
||||
|
||||
Returns:
|
||||
- numpy.ndarray: Sanitized 2D numpy array with numeric data.
|
||||
- list: Filtered x-axis labels.
|
||||
"""
|
||||
def to_numeric(value):
|
||||
try:
|
||||
if isinstance(value, str):
|
||||
# Remove any extra characters like '%' and convert to float
|
||||
return float(value.replace('%', '').strip())
|
||||
else:
|
||||
return float(value)
|
||||
except ValueError:
|
||||
return 0.0 # Default to 0 if conversion fails
|
||||
|
||||
# Create a boolean array for columns to keep (not in exclude_labels)
|
||||
columns_to_keep = [label not in exclude_labels for label in xLabels]
|
||||
|
||||
# Filter out the columns both from the data and xLabels
|
||||
filtered_data2d = []
|
||||
for row in data2d:
|
||||
filtered_row = [to_numeric(value) for keep, value in zip(columns_to_keep, row) if keep]
|
||||
filtered_data2d.append(filtered_row)
|
||||
|
||||
filtered_xLabels = [label for label, keep in zip(xLabels, columns_to_keep) if keep]
|
||||
|
||||
return np.array(filtered_data2d), filtered_xLabels
|
||||
|
||||
def create_heatmap(data2d, xLabels, yLabels, save_path='heatmap.html'):
|
||||
"""
|
||||
Creates and saves a heatmap from given 2D numpy array data using Plotly.
|
||||
Parameters:
|
||||
- data2d (list of lists or numpy.ndarray): A 2D list or numpy array containing the data.
|
||||
- xLabels (list): A list of category labels for the x-axis.
|
||||
- yLabels (list): A list of labels for the y-axis (e.g., hours).
|
||||
- save_path (str): The path where the plot image will be saved.
|
||||
"""
|
||||
excluded_columns = ["Count", "PERCENT", "TOTALS"]
|
||||
# Remove rows 24 and 25 by slicing the data and labels
|
||||
data2d = data2d[:24]
|
||||
yLabels = yLabels[:24] # Ensure yLabels also excludes those rows
|
||||
|
||||
# Sanitize and filter the data
|
||||
sanitized_data, filtered_xLabels = sanitize_and_filter_data(data2d, excluded_columns, xLabels)
|
||||
|
||||
# Ensure that the length of yLabels matches the number of rows (0 to n should be n+1 rows)
|
||||
if len(yLabels) != sanitized_data.shape[0]:
|
||||
raise ValueError("The length of yLabels must match the number of rows in the data.")
|
||||
|
||||
# Create the heatmap
|
||||
# Define a custom color scale where 0 is white
|
||||
color_scale = [
|
||||
[0, "lightgrey"],
|
||||
[0.3, "blue"],
|
||||
[0.6, 'green'],
|
||||
[0.75,'yellow'],
|
||||
[1,'red']
|
||||
]
|
||||
fig = px.imshow(sanitized_data,
|
||||
labels=dict(x="Category", y="Hour", color="Count"),
|
||||
x=filtered_xLabels,
|
||||
y=yLabels,
|
||||
color_continuous_scale=color_scale)
|
||||
|
||||
fig.update_layout(
|
||||
title='Heatmap of Counts by Category per Hour',
|
||||
xaxis_nticks=len(filtered_xLabels),
|
||||
yaxis_nticks=len(yLabels),
|
||||
margin=dict(l=0, r=0, t=30, b=0)
|
||||
|
||||
)
|
||||
fig.update_xaxes(showticklabels=True, side='bottom', showline=True, linewidth=2, linecolor='black', mirror=True)
|
||||
fig.update_yaxes(showticklabels=True, showline=True, linewidth=2, linecolor='black', mirror=True)
|
||||
|
||||
fig.write_html(save_path)
|
||||
|
||||
def create_line_chart(data2d, xLabels,yLabels, save_path='line_chart.html'):
|
||||
fig = go.Figure()
|
||||
|
||||
excluded_columns = ["Count", "PERCENT", "TOTALS"]
|
||||
# Remove rows 24 and 25 by slicing the data and labels
|
||||
data2d = data2d[:24]
|
||||
yLabels = yLabels[:24] # Ensure yLabels also excludes those rows
|
||||
|
||||
# Sanitize and filter the data
|
||||
sanitized_data, filtered_xLabels = sanitize_and_filter_data(data2d, excluded_columns, xLabels)
|
||||
|
||||
# Ensure that the length of yLabels matches the number of rows (0 to n should be n+1 rows)
|
||||
if len(yLabels) != sanitized_data.shape[0]:
|
||||
raise ValueError("The length of yLabels must match the number of rows in the data.")
|
||||
|
||||
|
||||
for i, category in enumerate(filtered_xLabels):
|
||||
fig.add_trace(go.Scatter(
|
||||
mode='lines+markers',
|
||||
name=category,
|
||||
x=[f'Hour {j}' for j in range(sanitized_data.shape[0])],
|
||||
y=sanitized_data[:, i]
|
||||
))
|
||||
|
||||
fig.update_layout(
|
||||
title='Line Chart of Counts by Category per Hour',
|
||||
xaxis=dict(title='Hour'),
|
||||
yaxis=dict(title='Count'),
|
||||
legend_title_text='Category'
|
||||
)
|
||||
|
||||
fig.write_html(save_path)
|
||||
|
||||
|
||||
def save_summaries_to_db(date_str, hour, parsed_data):
|
||||
|
||||
# Convert parsed_data to JSON string
|
||||
@ -1213,6 +1418,13 @@ if __name__ == "__main__":
|
||||
text_file_path = temp_file_name
|
||||
else:
|
||||
text_file_path = ""
|
||||
|
||||
# Create graph of data
|
||||
create_stacked_bar_graph(columnCounts_2d,columnHeaders)
|
||||
yLabels = [f'Hour {i}' for i in range(26)]
|
||||
create_heatmap(columnCounts_2d,columnHeaders,yLabels)
|
||||
create_line_chart(columnCounts_2d,columnHeaders,yLabels)
|
||||
|
||||
html_content = None
|
||||
text_content = None
|
||||
#Now see if Email required
|
||||
|
Loading…
Reference in New Issue
Block a user