derive graphs from main table

This commit is contained in:
Brian Read 2024-07-12 20:09:13 +01:00
parent ddcde8fa07
commit e014d91060

View File

@ -53,6 +53,9 @@
# yum install html2text --enablerepo=epel
# yum install mysql-connector-python --enablerepo=epel (not sure if this is required as well the pip3))
# pip3 install mysql-connector
# pip3 install numpy
# pip3 install plotly
# pip3 install pandas
#
# Rocky8: (probably - not yet checked this)
#
@ -76,6 +79,9 @@ import codecs
import argparse
import tempfile
import mysql.connector
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
Mailstats_version = '1.2'
build_date_time = "2024-06-18 12:03:40OURCE"
@ -119,6 +125,205 @@ ColPercent = 25
import mysql.connector
import json
def sanitize_data(data2d):
"""
Convert data to numeric values, stripping out non-numeric characters.
Parameters:
- data2d (list of lists): A 2D list containing the data.
Returns:
- numpy.ndarray: Sanitized 2D numpy array with numeric data.
"""
def to_numeric(value):
try:
if isinstance(value, str):
# Remove any extra characters like '%' and convert to float
return float(value.replace('%', '').strip())
else:
return float(value)
except ValueError:
return 0.0 # Default to 0 if conversion fails
sanitized_data = []
for row in data2d:
sanitized_row = [to_numeric(value) for value in row]
sanitized_data.append(sanitized_row)
return np.array(sanitized_data)
def create_stacked_bar_graph(data2d, xLabels, save_path='stacked_bar_graph.html'):
"""
Creates and saves a stacked bar graph from given 2D numpy array data using Plotly.
Parameters:
- data2d (list of lists or numpy.ndarray): A 2D list or numpy array containing the data.
- xLabels (list): A list of category labels for the x-axis.
- save_path (str): The path where the plot image will be saved.
"""
# Identify columns to be removed based on their headers
excluded_columns = ["Count", "PERCENT"]
# Create a boolean array for columns to keep (not in excluded_columns)
columns_to_keep = [label not in excluded_columns for label in xLabels]
# Filter out the columns both from the data and xLabels
filtered_data2d = []
for row in data2d:
filtered_row = [value for keep, value in zip(columns_to_keep, row) if keep]
filtered_data2d.append(filtered_row)
filtered_xLabels = [label for label, keep in zip(xLabels, columns_to_keep) if keep]
# Sanitize data and convert it to a numpy array
data = sanitize_data(filtered_data2d)
# Find columns that are not fully zero
non_zero_columns = np.any(data != 0, axis=0)
# Filter out fully zero columns from both the data and x_labels
filtered_data = data[:, non_zero_columns]
filtered_x_labels = np.array(filtered_xLabels)[non_zero_columns]
fig = go.Figure()
for i in range(filtered_data.shape[0]):
if i <= 23: # Ensure to annotate rows with proper names (e.g., Hours)
fig.add_trace(go.Bar(
name=f'Hour {i}',
x=filtered_x_labels,
y=filtered_data[i]
))
fig.update_layout(
barmode='stack',
title='Stacked Bar Graph Example',
xaxis=dict(title='Category'),
yaxis=dict(title='Values'),
legend_title_text='Rows'
)
# Save the graph to an HTML file
fig.write_html(save_path)
def sanitize_and_filter_data(data2d, exclude_labels, xLabels):
"""
Sanitize data by removing unwanted columns and converting to numeric values.
Parameters:
- data2d (list of lists): A 2D list containing the data.
- exclude_labels (list): Labels to exclude from the data and x-axis.
- xLabels (list): Current labels for the x-axis.
Returns:
- numpy.ndarray: Sanitized 2D numpy array with numeric data.
- list: Filtered x-axis labels.
"""
def to_numeric(value):
try:
if isinstance(value, str):
# Remove any extra characters like '%' and convert to float
return float(value.replace('%', '').strip())
else:
return float(value)
except ValueError:
return 0.0 # Default to 0 if conversion fails
# Create a boolean array for columns to keep (not in exclude_labels)
columns_to_keep = [label not in exclude_labels for label in xLabels]
# Filter out the columns both from the data and xLabels
filtered_data2d = []
for row in data2d:
filtered_row = [to_numeric(value) for keep, value in zip(columns_to_keep, row) if keep]
filtered_data2d.append(filtered_row)
filtered_xLabels = [label for label, keep in zip(xLabels, columns_to_keep) if keep]
return np.array(filtered_data2d), filtered_xLabels
def create_heatmap(data2d, xLabels, yLabels, save_path='heatmap.html'):
"""
Creates and saves a heatmap from given 2D numpy array data using Plotly.
Parameters:
- data2d (list of lists or numpy.ndarray): A 2D list or numpy array containing the data.
- xLabels (list): A list of category labels for the x-axis.
- yLabels (list): A list of labels for the y-axis (e.g., hours).
- save_path (str): The path where the plot image will be saved.
"""
excluded_columns = ["Count", "PERCENT", "TOTALS"]
# Remove rows 24 and 25 by slicing the data and labels
data2d = data2d[:24]
yLabels = yLabels[:24] # Ensure yLabels also excludes those rows
# Sanitize and filter the data
sanitized_data, filtered_xLabels = sanitize_and_filter_data(data2d, excluded_columns, xLabels)
# Ensure that the length of yLabels matches the number of rows (0 to n should be n+1 rows)
if len(yLabels) != sanitized_data.shape[0]:
raise ValueError("The length of yLabels must match the number of rows in the data.")
# Create the heatmap
# Define a custom color scale where 0 is white
color_scale = [
[0, "lightgrey"],
[0.3, "blue"],
[0.6, 'green'],
[0.75,'yellow'],
[1,'red']
]
fig = px.imshow(sanitized_data,
labels=dict(x="Category", y="Hour", color="Count"),
x=filtered_xLabels,
y=yLabels,
color_continuous_scale=color_scale)
fig.update_layout(
title='Heatmap of Counts by Category per Hour',
xaxis_nticks=len(filtered_xLabels),
yaxis_nticks=len(yLabels),
margin=dict(l=0, r=0, t=30, b=0)
)
fig.update_xaxes(showticklabels=True, side='bottom', showline=True, linewidth=2, linecolor='black', mirror=True)
fig.update_yaxes(showticklabels=True, showline=True, linewidth=2, linecolor='black', mirror=True)
fig.write_html(save_path)
def create_line_chart(data2d, xLabels,yLabels, save_path='line_chart.html'):
fig = go.Figure()
excluded_columns = ["Count", "PERCENT", "TOTALS"]
# Remove rows 24 and 25 by slicing the data and labels
data2d = data2d[:24]
yLabels = yLabels[:24] # Ensure yLabels also excludes those rows
# Sanitize and filter the data
sanitized_data, filtered_xLabels = sanitize_and_filter_data(data2d, excluded_columns, xLabels)
# Ensure that the length of yLabels matches the number of rows (0 to n should be n+1 rows)
if len(yLabels) != sanitized_data.shape[0]:
raise ValueError("The length of yLabels must match the number of rows in the data.")
for i, category in enumerate(filtered_xLabels):
fig.add_trace(go.Scatter(
mode='lines+markers',
name=category,
x=[f'Hour {j}' for j in range(sanitized_data.shape[0])],
y=sanitized_data[:, i]
))
fig.update_layout(
title='Line Chart of Counts by Category per Hour',
xaxis=dict(title='Hour'),
yaxis=dict(title='Count'),
legend_title_text='Category'
)
fig.write_html(save_path)
def save_summaries_to_db(date_str, hour, parsed_data):
# Convert parsed_data to JSON string
@ -1213,6 +1418,13 @@ if __name__ == "__main__":
text_file_path = temp_file_name
else:
text_file_path = ""
# Create graph of data
create_stacked_bar_graph(columnCounts_2d,columnHeaders)
yLabels = [f'Hour {i}' for i in range(26)]
create_heatmap(columnCounts_2d,columnHeaders,yLabels)
create_line_chart(columnCounts_2d,columnHeaders,yLabels)
html_content = None
text_content = None
#Now see if Email required