smeserver-mailstats/root/usr/bin/mailstats.py

1733 lines
64 KiB
Python

#
# Mailstats.py
#
#
# This script provides daily SpamFilter statistics.
#
# Mailstats
#
# usage: mailstats.py [-h] [-d DATE] [-ef EMAILFILE] [-tf TEXTFILE] [--version]
# [-db DBSAVE]
#
# Mailstats
#
# optional arguments:
# -h, --help show this help message and exit
# -d DATE, --date DATE Specify a valid date (yyyy-mm-dd) for the analysis
# -ef EMAILFILE, --emailfile EMAILFILE
# Save an html file of the email sent (y/N)
# -tf TEXTFILE, --textfile TEXTFILE
# Save a txt file of the html page (y/N)
# --version show program's version number and exit
# -db DBSAVE, --dbsave DBSAVE
# Force save of summary logs in DB (y/N)
#
#
# (June 2024 - bjr) Re-written in Python from Mailstats.pl (Perl) to conform to SME11 / Postfix / qpsmtpd log formats
# and html output added
#
# Todo:
# 2 Other stats
# 3. Extra bits for sub tables - DONE
# 4. Percent char causes sort to fail - look at adding it in the template - DONE
# 5. Chase disparity in counts betweeen old mailstats and this - Some of it DONE
# 6. Count emails delivered over ports 25/587/465 (SMTPS?)
# 7. Arrange that the spec file overwrites the date even if it has been overwritten before
# 8. Allow mailstats pages to be public or private (=> templating the fragment)) - DONE
# 9. Update format of the summarylogs page - DONE but still WIP
# 10. Add in links to summarylogs in web pages - DONE but still WIP
# 11. Move showSummaryLogs.php to individual directory "/opt/mailstats/php"
# 12. Make sure other directories not visible through apache
#
# Future:
# 1. Write summary line for each transaction to DB and link to it through cell in main table -DONE (write to DB))
# 2. Make DB password something more obscure.
# 3. Prune the DB according to parameter - delete corresponding page in opt/mailstats/html
# 4. Prune the html directory according to parameter
#
# Even more Future (if ever))
# 2. Link each summary line through DB to actual transaction lines
#
# Centos7:
# yum install python3-chameleon --enablerepo=epel
# yum install html2text --enablerepo=epel
# yum install mysql-connector-python --enablerepo=epel (not sure if this is required as well the pip3))
# pip3 install mysql-connector
# pip3 install numpy
# pip3 install plotly
# pip3 install pandas
#
# Rocky8: (probably - not yet checked this)
#
# dnf install python3-chameleon --enablerepo=epel
# dnf install html2text --enablerepo=epel
# pip3 install numpy
# pip3 pymysql
# pip3 install plotly
# pip3 install pandas
#
#
from datetime import datetime, timedelta
import sys
from chameleon import PageTemplateFile,PageTemplate
import pkg_resources
import re
import ipaddress
import subprocess
import os
from collections import defaultdict
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import codecs
import argparse
import tempfile
#import mysql.connector
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
import colorsys
import pymysql
import json
Mailstats_version = '1.2'
build_date_time = "2024-06-18 12:03:40OURCE"
build_date_time = build_date_time[:19] #Take out crap that sneaks in.
#if build_date_time == "2024-06-18 12:03:40OURCE":
# build_date_time = "Unknown"
script_dir = os.path.dirname(os.path.abspath(__file__))
data_file_path = script_dir+'/../..' #back to the top
now = datetime.now()
yesterday = now - timedelta(days=1)
formatted_yesterday = yesterday.strftime("%Y-%m-%d")
#html_page_path = data_file_path+"/home/e-smith/files/ibays/mesdb/html/mailstats/"
html_page_dir = data_file_path+"/opt/mailstats/html/"
template_dir = data_file_path+"/opt/mailstats/templates/"
logs_dir = data_file_path+"/opt/mailstats/logs/"
# Column numbering (easy to renumber or add one in)
Hour = 0
WebMail = Hour + 1
Local = WebMail + 1
MailMan = Local + 1
Relay = MailMan + 1
DMARC = Relay + 1
Virus = DMARC + 1
RBLDNS = Virus + 1
Geoip = RBLDNS + 1
NonConf = Geoip + 1
RejLoad = NonConf + 1
Karma = RejLoad + 1
DelSpam = Karma + 1
QuedSpam = DelSpam + 1
Ham = QuedSpam + 1
TOTALS = Ham + 1
PERCENT = TOTALS + 1
ColTotals = 24
ColPercent = 25
def sanitize_and_filter_data_for_stacked_bar(data2d, xLabels, yLabels, exclude_columns_labels, exclude_rows_labels):
"""
Sanitize data by removing unwanted columns and rows, and converting to numeric values.
Parameters:
- data2d (list of lists): A 2D list containing the data.
- xLabels (list): Current labels for the x-axis.
- yLabels (list): Current labels for the y-axis.
- exclude_columns_labels (list): Labels of columns to exclude from the data and x-axis.
- exclude_rows_labels (list): Labels of rows to exclude from the y-axis.
Returns:
- numpy.ndarray: Sanitized 2D numpy array with numeric data.
- list: Filtered x-axis labels.
- list: Filtered y-axis labels.
"""
def to_numeric(value):
try:
if isinstance(value, str):
# Remove any extra characters like '%' and convert to float
return float(value.replace('%', '').strip())
else:
return float(value)
except ValueError:
return 0.0 # Default to 0 if conversion fails
# Filter out columns based on their labels
exclude_columns_indices = [xLabels.index(label) for label in exclude_columns_labels if label in xLabels]
filtered_data2d = [
[to_numeric(value) for idx, value in enumerate(row) if idx not in exclude_columns_indices]
for row in data2d
]
filtered_xLabels = [label for idx, label in enumerate(xLabels) if idx not in exclude_columns_indices]
# Filter out rows based on their labels
filtered_data2d = [row for label, row in zip(yLabels, filtered_data2d) if label not in exclude_rows_labels]
filtered_yLabels = [label for label in yLabels if label not in exclude_rows_labels]
# Convert filtered data to numpy array
return np.array(filtered_data2d), filtered_xLabels, filtered_yLabels
def generate_distinct_colors(num_colors):
"""Generate distinct colors using HSV color space."""
colors = []
for i in range(num_colors):
hue = i / num_colors
saturation = 0.7
value = 0.9
r, g, b = colorsys.hsv_to_rgb(hue, saturation, value)
colors.append(f'rgb({int(r * 255)},{int(g * 255)},{int(b * 255)})')
return colors
def create_stacked_bar_graph(data2d, xLabels, yLabels, save_path='stacked_bar_graph.html'):
"""
Creates and saves a stacked bar graph from given 2D numpy array data using Plotly.
Parameters:
- data2d (list of lists or numpy.ndarray): A 2D list or numpy array containing the data.
- xLabels (list): A list of category labels for the x-axis.
- yLabels (list): A list of labels for the y-axis (e.g., hours).
- save_path (str): The path where the plot image will be saved.
"""
# Identify columns to be removed based on their headers (label names) and indices (hours 24 and 25)
exclude_columns_labels = ["Count", "PERCENT","TOTALS"]
exclude_rows_labels = ["24:00", "25:00"]
# Ensure input yLabels correspond to the data
if len(yLabels) != len(data2d):
raise ValueError(f"The length of yLabels {len(yLabels)} must match the number of rows in the data {len(data2d)}.")
# Sanitize and filter the data
sanitized_data, filtered_xLabels, filtered_yLabels = sanitize_and_filter_data_for_stacked_bar(data2d, xLabels, yLabels, exclude_columns_labels, exclude_rows_labels)
# Ensure that the length of yLabels matches the number of rows (0 to n should be n+1 rows)
if len(filtered_yLabels) != sanitized_data.shape[0]:
raise ValueError(f"The length of filtered_yLabels {len(filtered_yLabels)} must match the number of rows in the data {sanitized_data.shape[0]}.")
# Transpose the data so that hours are on the x-axis and categories are stacked in the y-axis
transposed_data = sanitized_data.T
fig = go.Figure()
# Get unique colors for each category
extended_colors = generate_distinct_colors(len(filtered_xLabels))
for i, category in enumerate(filtered_xLabels):
fig.add_trace(go.Bar(
name=category,
x=filtered_yLabels,
y=transposed_data[i],
marker_color=extended_colors[i % len(extended_colors)] # Cycle through the colors if there are more categories than colors
))
fig.update_layout(
barmode='stack',
title='Stacked Bar Graph by Hour',
xaxis=dict(title='Hour'),
yaxis=dict(title='Values'),
legend_title_text='Categories',
margin = {
'l': 50, #left margin
'r': 120, #right margin
't': 50, #top margin
'b': 50 #bottom margin
}
)
# Save the graph to an HTML file
fig.write_html(save_path)
# Write it to a var and return the string
graph_html = fig.to_html(full_html=False,include_plotlyjs='https://cdn.plot.ly/plotly-latest.min.js')
return graph_html
def sanitize_and_filter_data(data2d, exclude_labels, xLabels):
"""
Sanitize data by removing unwanted columns and converting to numeric values.
Parameters:
- data2d (list of lists): A 2D list containing the data.
- exclude_labels (list): Labels to exclude from the data and x-axis.
- xLabels (list): Current labels for the x-axis.
Returns:
- numpy.ndarray: Sanitized 2D numpy array with numeric data.
- list: Filtered x-axis labels.
"""
def to_numeric(value):
try:
if isinstance(value, str):
# Remove any extra characters like '%' and convert to float
return float(value.replace('%', '').strip())
else:
return float(value)
except ValueError:
return 0.0 # Default to 0 if conversion fails
# Create a boolean array for columns to keep (not in exclude_labels)
columns_to_keep = [label not in exclude_labels for label in xLabels]
# Filter out the columns both from the data and xLabels
filtered_data2d = []
for row in data2d:
filtered_row = [to_numeric(value) for keep, value in zip(columns_to_keep, row) if keep]
filtered_data2d.append(filtered_row)
filtered_xLabels = [label for label, keep in zip(xLabels, columns_to_keep) if keep]
return np.array(filtered_data2d), filtered_xLabels
def create_heatmap(data2d, xLabels, yLabels, save_path='heatmap.html'):
"""
Creates and saves a heatmap from given 2D numpy array data using Plotly.
Parameters:
- data2d (list of lists or numpy.ndarray): A 2D list or numpy array containing the data.
- xLabels (list): A list of category labels for the x-axis.
- yLabels (list): A list of labels for the y-axis (e.g., hours).
- save_path (str): The path where the plot image will be saved.
"""
excluded_columns = ["Count", "PERCENT", "TOTALS"]
# Remove rows 24 and 25 by slicing the data and labels
data2d = data2d[:24]
yLabels = yLabels[:24] # Ensure yLabels also excludes those rows
# Sanitize and filter the data
sanitized_data, filtered_xLabels = sanitize_and_filter_data(data2d, excluded_columns, xLabels)
# Ensure that the length of yLabels matches the number of rows (0 to n should be n+1 rows)
if len(yLabels) != sanitized_data.shape[0]:
raise ValueError("The length of yLabels must match the number of rows in the data.")
# Create the heatmap
# Define a custom color scale where 0 is white
color_scale = [
[0, "lightgrey"],
[0.3, "blue"],
[0.6, 'green'],
[0.75,'yellow'],
[1,'red']
]
fig = px.imshow(sanitized_data,
labels=dict(x="Category", y="Hour", color="Count"),
x=filtered_xLabels,
y=yLabels,
color_continuous_scale=color_scale)
fig.update_layout(
title='Heatmap of Counts by Category per Hour',
xaxis_nticks=len(filtered_xLabels),
yaxis_nticks=len(yLabels),
margin=dict(l=0, r=0, t=30, b=0)
)
fig.update_xaxes(showticklabels=True, side='bottom', showline=True, linewidth=2, linecolor='black', mirror=True)
fig.update_yaxes(showticklabels=True, showline=True, linewidth=2, linecolor='black', mirror=True)
fig.write_html(save_path)
# Write it to a var and return the string
graph_html = fig.to_html(full_html=False,include_plotlyjs='https://cdn.plot.ly/plotly-latest.min.js')
return graph_html
def create_line_chart(data2d, xLabels, yLabels, save_path='line_chart.html'):
fig = go.Figure()
excluded_columns = ["Count", "PERCENT", "TOTALS"]
# Remove rows 24 and 25 by slicing the data and labels
data2d = data2d[:24]
yLabels = yLabels[:24] # Ensure yLabels also excludes those rows
# Sanitize and filter the data
sanitized_data, filtered_xLabels = sanitize_and_filter_data(data2d, excluded_columns, xLabels)
# Ensure that the length of yLabels matches the number of rows (0 to n should be n+1 rows)
if len(yLabels) != sanitized_data.shape[0]:
raise ValueError("The length of yLabels must match the number of rows in the data.")
# Remove rows with all zero elements and the corresponding categories
nonzero_rows_indices = np.where(~np.all(sanitized_data == 0, axis=0))[0] # find rows with non-zero elements
sanitized_data = sanitized_data[:, nonzero_rows_indices]
filtered_xLabels = [filtered_xLabels[i] for i in nonzero_rows_indices] # update filtered_xLabels
for i, category in enumerate(filtered_xLabels):
fig.add_trace(go.Scatter(
mode='lines+markers',
name=category,
x= [f'{j:02d}:00' for j in range(sanitized_data.shape[0])],
y=sanitized_data[:, i]
))
fig.update_layout(
title='Line Chart of Counts by Category per Hour',
xaxis=dict(title='Hour'),
yaxis=dict(title='Count'),
legend_title_text='Category'
)
fig.write_html(save_path)
# Write it to a var and return the string
graph_html = fig.to_html(full_html=False,include_plotlyjs='https://cdn.plot.ly/plotly-latest.min.js')
return graph_html
def save_summaries_to_db(date_str, hour, parsed_data):
# Convert parsed_data to JSON string
json_data = json.dumps(parsed_data)
# Insert the record
insert_query = """
INSERT INTO SummaryLogs (Date, Hour, logData)
VALUES (%s, %s, %s)
"""
try:
cursor.execute(insert_query, (date_str, hour, json_data))
conn.commit()
except mysql.connector.Error as err:
print(f"DB Error {date_str} {hour} : {err}")
conn.rollback()
def is_running_under_thonny():
# Check for the 'THONNY_USER_DIR' environment variable
return 'THONNY_USER_DIR' in os.environ
# Routines to access the E-Smith dbs
def parse_entity_line(line):
"""
Parses a single line of key-value pairs.
:param line: Single line string to be parsed
:return: Dictionary with keys and values
"""
parts = line.split('|')
# First part contains the entity name and type in the format 'entity_name=type'
entity_part = parts.pop(0)
entity_name, entity_type = entity_part.split('=')
entity_dict = {'type': entity_type}
for i in range(0, len(parts)-1, 2):
key = parts[i]
value = parts[i+1]
entity_dict[key] = value
return entity_name, entity_dict
def parse_config(config_string):
"""
Parses a multi-line configuration string where each line is an entity with key-value pairs.
:param config_string: Multi-line string to be parsed
:return: Dictionary of dictionaries with entity names as keys
"""
config_dict = {}
lines = config_string.strip().split('\n')
for line in lines:
line = line.strip()
if line.startswith('#'): # Skip lines that start with '#'
continue
entity_name, entity_dict = parse_entity_line(line)
config_dict[entity_name] = entity_dict
return config_dict
def read_config_file(file_path):
"""
Reads a configuration file and parses its contents.
:param file_path: Path to the configuration file
:return: Parsed configuration dictionary
"""
with open(file_path, 'r') as file:
config_string = file.read()
return parse_config(config_string)
def get_value(config_dict, entity, key, default=None):
"""
Retrieves the value corresponding to the given key from a specific entity.
:param config_dict: Dictionary of dictionaries with parsed config
:param entity: Entity from which to retrieve the key's value
:param key: Key whose value needs to be retrieved
:param default: Default value to return if the entity or key does not exist
:return: Value corresponding to the key, or the default value if the entity or key does not exist
"""
return config_dict.get(entity, {}).get(key, default)
def is_private_ip(ip):
try:
# Convert string to an IPv4Address object
ip_addr = ipaddress.ip_address(ip)
except ValueError:
return False
# Define private IP ranges
private_ranges = [
ipaddress.ip_network('10.0.0.0/8'),
ipaddress.ip_network('172.16.0.0/12'),
ipaddress.ip_network('192.168.0.0/16'),
]
# Check if the IP address is within any of these ranges
for private_range in private_ranges:
if ip_addr in private_range:
return True
return False
def truncate_microseconds(timestamp):
# Split timestamp into main part and microseconds
try:
main_part, microseconds = timestamp.split('.')
# Truncate the last three digits of the microseconds
truncated_microseconds = microseconds[:-3]
# Combine the main part and truncated microseconds
truncated_timestamp = f"{main_part}.{truncated_microseconds}"
except Exception as e:
print(f"{e} {timestamp}")
raise ValueError
# Remove the microseconds completely if they exist
return truncated_timestamp.split('.')[0]
def read_in_relevant_log_file(file_path,analysis_date=yesterday):
# Read the file and split each line into a list - timestamp and the rest
log_entries = []
skip_record_count = 0
ignore_record_count = 0
# Get the year of yesterday
yesterday = datetime.now() - timedelta(days=1)
yesterday_year = yesterday.year
with codecs.open(file_path, 'rb','utf-8', errors='replace') as file:
try:
for Line in file:
#extract time stamp
try:
entry = split_timestamp_and_data(Line)
# compare with anal date
timestamp_str = entry[0]; #truncate_microseconds(entry[0])
#print(f"Timestamp:{timestamp_str}")
except ValueError as e:
#print(f"ValueError {e} on timestamp create {timestamp_str}:{entry[0]} {entry[1]}")
skip_record_count += 1
continue
# Parse the timestamp string into a datetime object
# Ignoring extra microseconds
try:
timestamp = datetime.strptime(timestamp_str, "%b %d %H:%M:%S")
# and add in gthe year of yesterday
timestamp = timestamp.replace(year=yesterday_year)
except ValueError as e:
print(f"ValueError {e} on timestamp extract {timestamp_str}:{entry[1]}")
#print(f"Stamps: {timestamp.date()} {analysis_date.date()}")
if timestamp.date() == analysis_date.date():
log_entries.append((timestamp, entry[1]))
else:
ignore_record_count += 1
except UnicodeDecodeError as e:
pass
return [log_entries,skip_record_count,ignore_record_count]
def filter_summary_records(log_entries):
# Return just the summary records
filtered_log_entries = []
skipped_entry_count = 0
for line in log_entries:
if '`' in line[1]:
filtered_log_entries.append(line)
else:
skipped_entry_count += 1
return [filtered_log_entries,skipped_entry_count]
def sort_log_entries(log_entries):
# Sort the records, based on the timestamp
sorted_entries = sorted(log_entries, key=lambda x: x[0])
# and return a dictionary
sorted_dict = {entry[0]: entry[1] for entry in sorted_entries}
return sorted_dict
def parse_data(data):
# Split data string into parts and map to named fields.
# Adjust the field names and parsing logic according to your data format.
# Split at the backtick - before it fields split at space, after, fields split at tab
parts = data.split('`')
fields1 = parts[0].strip().split() if len(parts) > 0 else []
fields2 = parts[1].split('\t') if len(parts) > 1 else []
# then merge them
fields = fields1 + fields2
# if fields[4] == ''local'host':
# i = 0
# print(f"len:{len(fields)}")
# for part in fields:
# print(f"{i}: {part}")
# i = i +1
# quit()
# and mapping:
try:
return_dict = {
'sme': fields[0].strip() if len(fields) > 0 else None,
'qpsmtpd': fields[1].strip() if len(fields) > 1 else None,
'id': fields[2].strip() if len(fields) > 2 else None,
'logterse': fields[3].strip() if len(fields) > 3 else None,
'ip': fields[4].strip() if len(fields) > 4 else None,
'sendurl': fields[5].strip() if len(fields) > 5 else None, #1
'sendurl1': fields[6].strip() if len(fields) > 6 else None, #2
'from-email': fields[7].strip() if len(fields) > 7 else None, #3
'error-reason': fields[7].strip() if len(fields) > 7 else None, #3
'to-email': fields[8].strip() if len(fields) > 8 else None, #4
'error-plugin': fields[9].strip() if len(fields) > 9 else None, #5
'action1': fields[9].strip() if len(fields) > 9 else None, #5
'error-number' : fields[10].strip() if len(fields) > 10 else None, #6
'sender': fields[11].strip() if len(fields) > 11 else None, #7
'virus': fields[11].strip() if len(fields) > 11 else None, #7
'error-msg' :fields[12].strip() if len(fields) > 12 else None, #7
'spam-status': fields[12].strip() if len(fields) > 12 else None, #8
'error-result': fields[13].strip() if len(fields) > 13 else None,#8
# Add more fields as necessary
}
except:
print(f"error:len:{len(fields)}")
return_dict = {}
return return_dict
# def count_entries_by_hour(log_entries):
# hourly_counts = defaultdict(int)
# for entry in log_entries:
# # Extract hour from the timestamp
# timestamp = entry['timestamp']
# hour = datetime.datetime.strptime(timestamp, '%Y-%m-%d %H:%M:%S').strftime('%Y-%m-%d %H')
# hourly_counts[hour] += 1
# return hourly_counts
def initialize_2d_array(num_hours, column_headers_len,reporting_date):
num_hours += 1 # Adjust for the zeroth hour
# Initialize the 2D list with zeroes
return [[0] * column_headers_len for _ in range(num_hours)]
def search_2d_list(target, data):
"""
Search for a target string in a 2D list of variable-length lists of strings.
:param target: str, the string to search for
:param data: list of lists of str, the 2D list to search
:return: int, the row number where the target string is found, or -1 if not found
"""
for row_idx, row in enumerate(data):
if target in row:
return row_idx
return -1 # Return -1 if not found
def check_html2text_installed():
try:
# Check if html2text is installed by running 'which html2text'
result = subprocess.run(
['which', 'html2text'],
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
# If the command finds html2text, it will output the path
html2text_path = result.stdout.decode('utf-8').strip()
if not html2text_path:
raise FileNotFoundError
print(f"html2text is installed at: {html2text_path}")
return True
except subprocess.CalledProcessError:
print("html2text is not installed. Please install it using your package manager.", file=sys.stderr)
return False
def html_to_text(input_file, output_file):
if not check_html2text_installed():
sys.exit(1)
try:
# Run the html2text command with -b0 --pad-tables parameters
result = subprocess.run(
['html2text', '-b0', '--pad-tables', input_file],
check=True, # Raise a CalledProcessError on non-zero exit
stdout=subprocess.PIPE, # Capture stdout
stderr=subprocess.PIPE # Capture stderr
)
# Write the stdout from the command to the output file
with open(output_file, 'w', encoding='utf-8') as outfile:
outfile.write(result.stdout.decode('utf-8'))
print(f"Converted {input_file} to {output_file}")
except subprocess.CalledProcessError as e:
print(f"Error occurred: {e.stderr.decode('utf-8')}", file=sys.stderr)
sys.exit(e.returncode)
def get_html2text_version():
try:
result = subprocess.run(['html2text', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
# Ensure the result is treated as a string in Python 3.6+
return result.stdout.strip()
except subprocess.CalledProcessError as e:
print(f"Error occurred while checking html2text version: {e}", file=sys.stderr)
return None
def print_progress_bar(iteration, total, prefix='', suffix='', decimals=1, length=50, fill='', print_end="\r"):
"""
Call in a loop to create a terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
length - Optional : character length of bar (Int)
fill - Optional : bar fill character (Str)
print_end - Optional : end character (e.g. "\r", "\r\n") (Str)
"""
if total == 0:
raise ValueError("Progress total is zero")
percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total)))
filled_length = int(length * iteration // total)
bar = fill * filled_length + '-' * (length - filled_length)
print(f'\r{prefix} |{bar}| {percent}% {suffix}', end=print_end)
# Print New Line on Complete
if iteration == total:
print()
def insert_string_after(original:str, to_insert:str, after:str) -> str:
"""
Insert to_insert into original after the first occurrence of after.
:param original: The original string.
:param to_insert: The string to be inserted.
:param after: The set of characters after which the string will be inserted.
:return: The new string with to_insert inserted after after.
"""
position = original.find(after)
if position == -1:
print(f"insert_string_after:({after}) string is not found in original")
return original
# Position of the insertion point
insert_pos = position + len(after)
return original[:insert_pos] + to_insert + original[insert_pos:]
def split_timestamp_and_data(log_entry: str) -> list:
"""
Split a log entry into timestamp and the rest of the data.
:param log_entry: The log entry as a string.
:return: A list with two entries: [timestamp, rest_of_data].
"""
# The timestamp is always the first part, up to the first space after the milliseconds
# SME11 - the timestamp looks like this: "Dec 29 07:42:00 sme11 qpsmtpd-forkserver[942177]:<the rest>"
#
match = re.match(r'(\w{3} \d{1,2} \d{2}:\d{2}:\d{2}) (.+)', log_entry)
if match:
timestamp = match.group(1)
rest_of_line = match.group(2).strip() # Strip any leading spaces
else:
timestamp = None
rest_of_line = log_entry # If no match, return the whole line
#print(f"ts:{timestamp}")
return [timestamp, rest_of_line]
def render_sub_table(table_title,table_headers,found_values,get_character=None):
#print(f"render_sub_table:{table_title} {found_values}")
#Check if any data provided
if len(found_values) != 0:
# Get the total
if isinstance(found_values, dict):
# If found_values is a dictionary, we operate as previously
total_sum = sum(found_values.values())
if not BadCountries:
get_character = None
if get_character:
sub_result = [(key, value,
f"{round(value / total_sum * 100, 2)}%",
f"{get_character(key)}") for key, value in found_values.items()]
else:
sub_result = [(key, value,
f"{round(value / total_sum * 100, 2)}%" ) for key, value in found_values.items()]
elif isinstance(found_values, list):
# If found_values is a list of values
if all(isinstance(v, (int, float)) for v in found_values):
total_sum = sum(found_values)
sub_result = [(i, value,
f"{round(value / total_sum * 100, 2)}%") for i, value in enumerate(found_values)]
# If found_values is a list of dictionaries
elif all(isinstance(v, dict) for v in found_values):
# Example assumes first key is used for identification and others are numeric
# Convert to 2D array
sub_result = [list(entry.values()) for entry in found_values]
# Calculate the total of the first numeric entry (index 1)
total = sum(row[1] for row in sub_result)
# Append percentage of the total for each entry
for row in sub_result:
percentage = f"{round(row[1] / total * 100, 2) if total else 0}%" # Handle division by zero
row.append(percentage)
# total_sum = sum(d.get('value', 0) for d in found_values) # Adjust 'value' if necessary
# if total_sum != 0:
# if get_character:
# sub_result = [(d.get('key', i), d.get('value', 0),
# f"{round(d.get('value', 0) / total_sum * 100, 2)}%",
# f"{get_character(d.get('key', i))}") for i, d in enumerate(found_values)]
# else:
# sub_result = [(d.get('key', i), d.get('value', 0),
# f"{round(d.get('value', 0) / total_sum * 100, 2)}%") for i, d in enumerate(found_values)]
# else:
# if get_character:
# sub_result = [(d.get('key', i), d.get('value', 0),
# f"{get_character(d.get('key', i))}") for i, d in enumerate(found_values)]
# else:
# sub_result = [(d.get('key', i), d.get('value', 0)) for i, d in enumerate(found_values)]
else:
raise ValueError("found_values must be either a list of numbers or a list of dictionaries.")
else:
raise TypeError("found_values must be a dictionary or a list.")
#print(f"Sub:{sub_result}")
sub_result.sort(key=lambda x: float(x[1]), reverse=True) # Sort by percentage in descending order
sub_template_path = template_dir+'mailstats-sub-table.html.pt'
# Load the template
with open(sub_template_path, 'r') as template_file:
template_content = template_file.read()
# Create a Chameleon template instance
try:
template = PageTemplate(template_content)
# Render the template with the 2D array data and column headers
try:
rendered_html = template(array_2d=sub_result, column_headers=table_headers, title=table_title)
except Exception as e:
raise ValueError(f"{table_title}: A chameleon controller render error occurred: {e}")
except Exception as e:
raise ValueError(f"{table_title}: A chameleon controller template error occurred: {e}")
else:
rendered_html = f"<div class={table_title}><h2>{table_title}</h2>No data for {table_title}</div>"
return rendered_html
def get_character_in_reject_list(code):
if code in BadCountries:
return "*"
else:
return ""
def read_html_from_file(filepath):
"""
Reads HTML content from a given file.
Args:
filepath (str): Path to the HTML file.
Returns:
str: HTML content of the file.
"""
# Need to add in here the contents of the css file at the end of the head section.
with open(filepath, 'r', encoding='utf-8') as file:
html_contents = file.read()
print("reading from html file")
# Get Filepath
css_path = os.path.dirname(filepath)+"/../css/mailstats.css"
# Read in CSS
with open(css_path, 'r', encoding='utf-8') as file:
css_contents = file.read()
html_contents = insert_string_after(html_contents,"\n"+css_contents,"<!--css here-->")
return html_contents
def read_text_from_file(filepath):
"""
Reads plain text content from a given file.
Args:
filepath (str): Path to the text file.
Returns:
str: Text content of the file.
"""
try:
with open(filepath, 'r', encoding='utf-8') as file:
return file.read()
except:
print(f"{filepath} not found")
return
def send_email(subject, from_email, to_email, smtp_server, smtp_port, HTML_content=None, Text_content=None, smtp_user=None, smtp_password=None):
"""
Sends an HTML email.
Args:
html_content (str): The HTML content to send in the email.
subject (str): The subject of the email.
from_email (str): The sender's email address.
to_email (str): The recipient's email address.
smtp_server (str): SMTP server address.
smtp_port (int): SMTP server port.
smtp_user (str, optional): SMTP server username. Default is None.
smtp_password (str, optional): SMTP server password. Default is None.
"""
#Example (which works!)
# send_email(
# subject="Your subject",
# from_email="mailstats@bjsystems.co.uk",
# to_email="brianr@bjsystems.co.uk",
# smtp_server="mail.bjsystems.co.uk",
# smtp_port=25
# HTML_content=html_content,
# Text_content=Text_content,
# )
# Set up the email
msg = MIMEMultipart('alternative')
msg['Subject'] = subject
msg['From'] = from_email
msg['To'] = to_email
if HTML_content:
part = MIMEText(HTML_content, 'html')
msg.attach(part)
if Text_content:
part = MIMEText(Text_content, 'plain')
msg.attach(part)
# Sending the email
with smtplib.SMTP(smtp_server, smtp_port) as server:
server.starttls() # Upgrade the connection to secure
if smtp_user and smtp_password:
server.login(smtp_user, smtp_password) # Authenticate only if credentials are provided
server.sendmail(from_email, to_email, msg.as_string())
def replace_between(text, start, end, replacement):
# Escaping start and end in case they contain special regex characters
pattern = re.escape(start) + '.*?' + re.escape(end)
# Using re.DOTALL to match any character including newline
replaced_text = re.sub(pattern, replacement, text, flags=re.DOTALL)
return replaced_text
def get_heading():
#
# Needs from anaytsis
# SATagLevel - done
# SARejectLevel - done
# warnnoreject - done
# totalexamined - done
# emailperhour - done
# spamavg - done
# rejectspamavg - done
# hamavg - done
# DMARCSendCount - done
# hamcount - done
# DMARCOkCount - deone
# Clam Version/DB Count/Last DB update
clam_output = subprocess.getoutput("freshclam -V")
clam_info = f"Clam Version/DB Count/Last DB update: {clam_output}"
# SpamAssassin Version
sa_output = subprocess.getoutput("spamassassin -V")
sa_info = f"SpamAssassin Version: {sa_output}"
# Tag level and Reject level
tag_reject_info = f"Tag level: {SATagLevel}; Reject level: {SARejectLevel} {warnnoreject}"
# SMTP connection stats
smtp_stats = f"External SMTP connections accepted: {totalexternalsmtpsessions}\n"\
f"Internal SMTP connections accepted: {totalinternalsmtpsessions}"
if len(connection_type_counts)>0:
for connection_type in connection_type_counts.keys():
smtp_stats += f"\nCount of {connection_type} connections: {connection_type_counts[connection_type]}"
smtp_stats = smtp_stats + f"\nEmails per hour: {emailperhour:.1f}/hr\n"\
f"Average spam score (accepted): {spamavg or 0:.2f}\n"\
f"Average spam score (rejected): {rejectspamavg or 0:.2f}\n"\
f"Average ham score: {hamavg or 0:.2f}\n"\
f"Number of DMARC reporting emails sent: {DMARCSendCount or 0} (not shown on table)"
# DMARC approved emails
dmarc_info = ""
if hamcount != 0:
dmarc_ok_percentage = DMARCOkCount * 100 / hamcount
dmarc_info = f"Number of emails approved through DMARC: {DMARCOkCount or 0} ({dmarc_ok_percentage:.2f}% of Ham count)"
# Accumulate all strings
header_str = "\n".join([clam_info, sa_info, tag_reject_info, smtp_stats, dmarc_info])
# switch newlines to <br />
header_str = header_str.replace("\n","<br />")
return header_str
def scan_mail_users():
#
# Count emails left in junkmail folders for each user
#
base_path = '/home/e-smith/files/users'
users_info = defaultdict(int)
# List of junk mail directories to check
junk_mail_directories = [
'Maildir/.Junk/cur',
'Maildir/.Junk/new',
'Maildir/.Junkmail/cur',
'Maildir/.Junkmail/new'
]
# Iterate through each user directory
for user in os.listdir(base_path):
user_path = os.path.join(base_path, user)
# Check if it is a directory
if os.path.isdir(user_path):
total_junk_count = 0
# Check each junk mail path and accumulate counts
for junk_dir in junk_mail_directories:
junk_mail_path = os.path.join(user_path, junk_dir)
# Check if the Junk directory actually exists
if os.path.exists(junk_mail_path):
try:
# Count the number of junk mail files in that directory
junk_count = len(os.listdir(junk_mail_path))
total_junk_count += junk_count
except Exception as e:
print(f"Error counting junk mails in {junk_mail_path} for user {user}: {e}")
if total_junk_count != 0:
users_info[user] = total_junk_count
return users_info
def get_first_email_with_domain(email_string, domain):
"""
Returns the first email address in the comma-separated string that matches the specified domain.
If there is only one email, it returns that email regardless of the domain.
Args:
email_string (str): A string of comma-separated email addresses.
domain (str): The domain to filter email addresses by.
Returns:
str: The first email address that matches the domain, or the single email if only one is provided, or None if no match is found.
"""
# Remove leading and trailing whitespace and split the email string
emails = [email.strip() for email in email_string.split(',')]
# Check if there is only one email
if len(emails) == 1:
return emails[0] # Return the single email directly
# Iterate through the list of emails
for email in emails:
# Check if the email ends with the specified domain
if email.endswith('@' + domain):
return email # Return the first matching email
return None # Return None if no matching email is found
if __name__ == "__main__":
try:
chameleon_version = pkg_resources.get_distribution("Chameleon").version
except pkg_resources.DistributionNotFound:
chameleon_version = "Version information not available"
python_version = sys.version
python_version = python_version[:8]
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y-%m-%d %H:%M")
# Command line parameters
parser = argparse.ArgumentParser(description="Mailstats")
parser.add_argument('-d', '--date', help='Specify a valid date (yyyy-mm-dd) for the analysis', default=formatted_yesterday)
parser.add_argument('-ef', '--emailfile', help='Save an html file of the email sent (y/N)', default='n')
parser.add_argument('-tf', '--textfile', help='Save a txt file of the html page (y/N)', default='n')
parser.add_argument('--version', action='version', version='%(prog)s '+Mailstats_version+" built on "+build_date_time)
parser.add_argument('-db', '--dbsave', help='Force save of summary logs in DB (y/N)', default='n')
args = parser.parse_args()
analysis_date = args.date
# and check its format is valid
try:
datetime.strptime(analysis_date, '%Y-%m-%d')
except ValueError:
print("Specify a valid date (yyyy-mm-dd) for the analysis")
quit(1)
anaysis_date_obj = datetime.strptime(analysis_date, '%Y-%m-%d')
noemailfile = args.emailfile.lower() == 'n'
notextfile = args.textfile.lower() == 'n'
isThonny = is_running_under_thonny()
forceDbSave = args.dbsave.lower() == 'y'
#E-Smith Config DBs
if isThonny:
db_dir = "/home/brianr/SME11Build/GITFiles/smecontribs/smeserver-mailstats/"
else:
db_dir = "/home/e-smith/db/"
#From SMEServer DB
ConfigDB = read_config_file(db_dir+"configuration")
DomainName = get_value(ConfigDB, "DomainName", "type") #'bjsystems.co.uk' # $cdb->get('DomainName')->value;
hello_string = "Mailstats:"+Mailstats_version+' for '+DomainName+" for "+analysis_date+" Printed at:"+formatted_datetime
print(hello_string)
version_string = "Chameleon:"+chameleon_version+" Python:"+python_version
if isThonny:
version_string = version_string + "...under Thonny"
print(version_string)
RHSenabled = get_value(ConfigDB, "qpsmtpd", "RHSBL","disabled") == "enabled" #True #( $cdb->get('qpsmtpd')->prop('RHSBL') eq 'enabled' );
DNSenabled = get_value(ConfigDB, "qpsmtpd", "DNSBL","disabled") == "enabled" #True #( $cdb->get('qpsmtpd')->prop('DNSBL') eq 'enabled' );
SARejectLevel = int(get_value(ConfigDB, "spamassassin", "RejectLevel","12")) #12 #$cdb->get('spamassassin')->prop('RejectLevel');
SATagLevel = int(get_value(ConfigDB, "spamassassin", "TagLevel","4")) #4 #$cdb->get('spamassassin')->prop('TagLevel');
if SARejectLevel == 0:
warnnoreject = "(*Warning* 0 = no reject)"
else:
warnnoreject = ""
EmailAddress = get_value(ConfigDB,"mailstats","Email","admin@"+DomainName)
if '@' not in EmailAddress:
EmailAddress = EmailAddress+"@"+DomainName
EmailTextOrHTML = get_value(ConfigDB,"mailstats","EmailTextOrHTML","Both") #Text or Both or None
EmailHost = get_value(ConfigDB,"mailstats","EmailHost","localhost") #Default will be localhost
EmailPort = int(get_value(ConfigDB,"mailstats","EmailPort","25"))
EMailSMTPUser = get_value(ConfigDB,"mailstats","EmailUser") #None = default => no authenticatioon needed
EMailSMTPPassword = get_value(ConfigDB,"mailstats","EmailPassword")
BadCountries = get_value(ConfigDB,"qpsmtpd","BadCountries")
# Db save control
saveData = get_value(ConfigDB,"mailstats","SaveDataToMySQL","no") == 'yes' or forceDbSave
if saveData:
DBName = "mailstats";
DBHost = get_value(ConfigDB,'mailstats','DBHost',"localhost")
DBPort = get_value(ConfigDB,'mailstats','DBPort',"3306")
DBName = 'mailstats'
DBPassw = 'mailstats'
DBUser = 'mailstats'
UnixSocket = "/var/lib/mysql/mysql.sock"
# see if the DB exists
# Try to Establish a database connection
try:
conn = mysql.connector.connect(
host=DBHost,
user=DBUser,
password=DBPassw,
database=DBName,
port=DBPort,
unix_socket=UnixSocket
)
cursor = conn.cursor()
# Create table if it doesn't exist
cursor.execute("""
CREATE TABLE IF NOT EXISTS SummaryLogs (
id INT AUTO_INCREMENT PRIMARY KEY,
Date DATE,
Hour INT,
logData TEXT
)
""")
# and prune the DB here if needed.
# Delete existing records for the given date
try:
delete_query = """
DELETE FROM SummaryLogs
WHERE Date = %s
"""
cursor.execute(delete_query, (analysis_date,)) #Don't forget the syntactic sugar of the extra comma to make it a tuple!
# Get the number of records deleted
rows_deleted = cursor.rowcount
if rows_deleted > 0:
print(f"Deleted {rows_deleted} rows for {analysis_date} ")
except mysql.connector.Error as e:
print(f"SQL Delete failed ({delete_query}) ({e}) ")
except mysql.connector.Error as e:
print(f"Unable to connect to {DBName} on {DBHost} port {DBPort} error ({e}) ")
saveData = False
nolinks = not saveData
# Not sure we need these...
# if (ConfigDB,"qpsmtpd","RHSBL").lower() == 'enabled':
# RBLList = get_value(ConfigDB,"qpsmtpd","RBLList")
# else:
# RBLList = ""
# if (ConfigDB,"qpsmtpd","RBLList").lower() == 'enabled':
# SBLLIst = get_value(ConfigDB,"qpsmtpd","SBLLIst")
# else:
# RBLList = ""
# if (ConfigDB,"qpsmtpd","RBLList").lower() == 'enabled':
# UBLList = get_value(ConfigDB,"qpsmtpd","UBLLIst")
# else:
# RBLList = ""
FetchmailIP = '127.0.0.200'; #Apparent Ip address of fetchmail deliveries
WebmailIP = '127.0.0.1'; #Apparent Ip of Webmail sender
localhost = 'localhost'; #Apparent sender for webmail
FETCHMAIL = 'FETCHMAIL'; #Sender from fetchmail when Ip address not 127.0.0.200 - when qpsmtpd denies the email
MAILMAN = "bounces"; #sender when mailman sending when orig is localhost
DMARCDomain="dmarc"; #Pattern to recognised DMARC sent emails (this not very reliable, as the email address could be anything)
DMARCOkPattern="dmarc: pass"; #Pattern to use to detect DMARC approval
num_hours = 25 # Represents hours from 0 to 23 - adds extra one for column totals and another for percentages
log_file = logs_dir+'current.log'
log_entries,skip_count,ignored_count = read_in_relevant_log_file(log_file,anaysis_date_obj)
print(f"Found {len(log_entries)} entries in log for for {anaysis_date_obj.strftime('%Y-%m-%d')} Ignored: {ignored_count} skipped: {skip_count}")
summary_log_entries,skip_count = filter_summary_records(log_entries)
print(f"Found {len(summary_log_entries)} summary entries and skipped {skip_count} entries")
sorted_log_dict = sort_log_entries(summary_log_entries)
print(f"Sorted {len(sorted_log_dict)} entries")
columnHeaders = ['Count','WebMail','Local','MailMan','Relay','DMARC','Virus','RBL/DNS','Geoip.','Non.Conf.','Karma','Rej.Load','Del.Spam','Qued.Spam?',' Ham','TOTALS','PERCENT']
# dict for each colum identifying plugin that increments count
columnPlugin = [''] * 17
columnPlugin[Hour] = []
columnPlugin[WebMail] = []
columnPlugin[Local] = []
columnPlugin[MailMan] = []
columnPlugin[DMARC] = ['dmarc']
columnPlugin[Virus] = ['pattern_filter', 'virus::pattern_filter','virus::clamav','virus::clamdscan']
columnPlugin[RBLDNS] = ['rhsbl', 'dnsbl','uribl']
columnPlugin[Geoip] = ['check_badcountries']
columnPlugin[NonConf] = ['check_earlytalker','check_relay','check_norelay', 'require_resolvable_fromhost'
,'check_basicheaders','check_badmailfrom','check_badrcptto_patterns'
,'check_badrcptto','check_spamhelo','check_goodrcptto extn','rcpt_ok'
,'check_goodrcptto','check_smtp_forward','count_unrecognized_commands','tls','auth::auth_cvm_unix_local'
,'auth::auth_imap', 'earlytalker','resolvable_fromhost','relay','headers','mailfrom','badrcptto','helo'
,'check_smtp_forward','sender_permitted_from']
columnPlugin[RejLoad] = ['loadcheck']
columnPlugin[DelSpam] = []
columnPlugin[QuedSpam] = []
columnPlugin[Ham] = []
columnPlugin[TOTALS] = []
columnPlugin[PERCENT] = []
columnPlugin[Karma] = ['karma']
columnHeaders_len = len(columnHeaders)
columnCounts_2d = initialize_2d_array(num_hours, columnHeaders_len,analysis_date)
virus_pattern = re.compile(r"Virus found: (.*)")
found_viruses = defaultdict(int)
recipients_found = []
found_qpcodes = defaultdict(int)
qpcodes_pattern = re.compile(r"(\(.*\)).*'")
email_pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}' #extract email from rejected message
i = 0;
sorted_len= len(sorted_log_dict)
#unless none to show
spamavg = 0;
spamqueuedcount = 0
hamcount = 0
hamavg = 0
rejectspamcount = 0
rejectspamavg = 0
DMARCSendCount = 0
totalexamined = 0
total_qpsmtpd = 0
total_sqpsmtpd = 0
total_uqpsmtpd = 0
if sorted_len > 0:
if isThonny:
# Initial call to print the progress bar
print_progress_bar(0, sorted_len, prefix='Progress:', suffix='Complete', length=50)
for timestamp, data in sorted_log_dict.items():
i += 1
totalexamined += 1
if isThonny:
print_progress_bar(i, sorted_len, prefix='Scanning for main table:', suffix='Complete', length=50)
# Count of in which hour it falls
# Parse the timestamp string into a datetime object
dt = timestamp
hour = dt.hour
# parse the data
parsed_data = parse_data(data)
if parsed_data['id'] == '13062' or "13062" in data:
print(f"{parsed_data}")
#else:
# print(f"{parsed_data['id']}")
#Take out the mailstats email
if 'mailstats' in parsed_data['from-email'] and DomainName in parsed_data['from-email']:
continue
# Save the data here if necessary
if saveData:
save_summaries_to_db(anaysis_date_obj.strftime('%Y-%m-%d'),hour,parsed_data)
#Count the number of emails through each of qpsmtpd, uqpsmtpd and sqpsmtpd
# the forkserver column in the log indicates it.
if parsed_data['qpsmtpd'].startswith ('qpsmtpd'):
total_qpsmtpd +=1
elif parsed_data['qpsmtpd'].startswith ('sqpsmtpd'):
total_sqpsmtpd += 1
elif parsed_data['qpsmtpd'].startswith ('uqpsmtpd'):
total_uqpsmtpd +=1
# Increment Count in which headings it falls
#Hourly count and column total
columnCounts_2d[hour][Hour] += 1
columnCounts_2d[ColTotals][Hour] += 1
#Row Totals
columnCounts_2d[hour][TOTALS] += 1
#Total totals
columnCounts_2d[ColTotals][TOTALS] += 1
# first spot the fetchmail and 'local' deliveries.
#Local send
#print(f"{DomainName} {parsed_data['sendurl']}")
if DomainName in parsed_data['sendurl']:
#print(f"{DomainName} {parsed_data['sendurl']}")
columnCounts_2d[hour][Local] += 1
columnCounts_2d[ColTotals][Local] += 1
#Relay or webmail
elif not is_private_ip(parsed_data['ip']) and is_private_ip(parsed_data['sendurl1']) and parsed_data['action1'] == 'queued':
#Relay
columnCounts_2d[hour][Relay] += 1
columnCounts_2d[ColTotals][Relay] += 1
elif WebmailIP in parsed_data['sendurl1'] and not is_private_ip(parsed_data['ip']):
#webmail
columnCounts_2d[hour][WebMail] += 1
columnCounts_2d[ColTotals][WebMail] += 1
elif localhost in parsed_data['sendurl']:
# but not if it comes from fetchmail
if not FETCHMAIL in parsed_data['sendurl1']:
# might still be from mailman here
if MAILMAN in parsed_data['sendurl1']:
#$mailmansendcount++;
#$localsendtotal++;
columnCounts_2d[hour][MailMan] += 1
columnCounts_2d[ColTotals][MailMan] += 1
#$counts{$abshour}{$CATMAILMAN}++;
#$localflag = 1;
else:
#Or sent to the DMARC server
#check for email address in $DMARC_Report_emails string
#my $logemail = $log_items[4];
if DMARCDomain in parsed_data['from-email']: #(index($DMARC_Report_emails,$logemail)>=0) or
#$localsendtotal++;
DMARCSendCount += 1
#localflag = 1;
else:
# ignore incoming localhost spoofs
if not 'msg denied before queued' in parsed_data['error-msg']:
#Webmail
#$localflag = 1;
#$WebMailsendtotal++;
columnCounts_2d[hour][WebMail] += 1
columnCounts_2d[ColTotals][WebMail] += 1
#$WebMailflag = 1;
else:
#$localflag = 1;
#$WebMailsendtotal++;
#$WebMailflag = 1;
columnCounts_2d[hour][WebMail] += 1
columnCounts_2d[ColTotals][WebMail] += 1
#Queued email
if parsed_data['action1'] == 'queued':
columnCounts_2d[hour][Ham] += 1
columnCounts_2d[ColTotals][Ham] += 1
# spamassassin not rejected
if parsed_data.get('spam-status') is not None and isinstance(parsed_data['spam-status'], str):
if parsed_data['spam-status'].lower().startswith('no'):
#Extract other parameters from this string
# example: No, score=-3.9
spam_pattern = re.compile(r'score=(-?\d+\.\d+) required=(-?\d+\.\d+)')
match = re.search(spam_pattern, parsed_data['spam-status'])
if match:
score = float(match.group(1))
if score < float(SATagLevel):
# Accumulate allowed score (inc negatives?)
hamavg += score
hamcount += 1
#spamassasin rejects
Isqueuedspam = False;
if parsed_data.get('spam-status') is not None and isinstance(parsed_data['spam-status'], str):
if parsed_data['spam-status'].lower().startswith('yes'):
#Extract other parameters from this string
# example: Yes, score=10.3 required=4.0 autolearn=disable
spam_pattern = re.compile(r'score=(-?\d+\.\d+) required=(-?\d+\.\d+)')
match = re.search(spam_pattern, parsed_data['spam-status'])
if match:
score = float(match.group(1))
required = float(match.group(2))
if score >= SARejectLevel:
columnCounts_2d[hour][DelSpam] += 1
columnCounts_2d[ColTotals][DelSpam] += 1
rejectspamavg += score
rejectspamcount += 1
elif score >= required:
columnCounts_2d[hour][QuedSpam] += 1
columnCounts_2d[ColTotals][QuedSpam] += 1
spamavg += score
spamqueuedcount += 1
Isqueuedspam = True #for recipient stats below
# Count the qpsmtpd codes
if parsed_data['error-plugin'].strip() == 'naughty':
if parsed_data['error-msg'].startswith("(dnsbl)"):
columnCounts_2d[hour][RBLDNS]+= 1
columnCounts_2d[ColTotals][RBLDNS]+= 1
elif parsed_data['error-msg'].startswith("(karma)"):
columnCounts_2d[hour][KARMA] += 1
columnCounts_2d[ColTotals][KARMA]+= 1
elif parsed_data['error-msg'].startswith("(helo)"):
columnCounts_2d[hour][RBLDNS] += 1
columnCounts_2d[ColTotals][RBLDNS]+= 1
else:
match = qpcodes_pattern.match(parsed_data['action1'])
if match:
rejReason = match.group(1)
found_qpcodes[parsed_data['error-plugin']+"-"+rejReason] += 1
else:
found_qpcodes[parsed_data['action1']] += 1
#Log the recipients and deny or accept and spam-tagged counts
# Try to find an existing record for the email
action = parsed_data["action1"] # Extract action
if parsed_data['error-plugin'] == 'check_smtp_forward':
#extract rejected email address from sender
match = re.search(email_pattern, parsed_data['sender'])
# If a match is found, return the email address
if match:
email = match.group(0)
else:
email = "unknown (no email found in smtp reject message)"
elif parsed_data['error-plugin'] == 'check_badcountries':
email = "Unknown (Bad Country)"
elif not is_private_ip(parsed_data['ip']) and parsed_data["to-email"]:
#Only look at internal recipients from outside
#Take out the chevrons
email = parsed_data["to-email"].replace('<', '').replace('>', '')
email = get_first_email_with_domain(email,DomainName) # Extract email
if not email:
print(f"Incoming email with no internal email address: {email} {DomainName}")
email = "Unknown (no internal email found)"
else:
if not is_private_ip(parsed_data['ip']):
email = "Unknown (non conf?)"
else:
email = None
#print(f"{parsed_data['id']} {email} {action}")
if email:
record = next((item for item in recipients_found if item['email'] == email), None)
if not record:
# If email is not in the array, we add it
record = {"email": email,"accept": 0,"deny": 0,"spam-tagged": 0}
recipients_found.append(record)
# Update the deny or accept count based on action
if action != "queued":
record["deny"] += 1
else:
record["accept"] += 1
#and see if it is spam tagged
if Isqueuedspam:
record["spam-tagged"] += 1
#Now increment the column which the plugin name indicates
if parsed_data['error-msg'] and "msg denied before queued" in parsed_data['error-msg'] and parsed_data['virus']:
if parsed_data['error-plugin']:
row = search_2d_list(parsed_data['error-plugin'],columnPlugin)
if not row == -1:
columnCounts_2d[hour][row] += 1
columnCounts_2d[ColTotals][row] += 1
# a few ad hoc extra extractons of data
if row == Virus:
match = virus_pattern.match(parsed_data['virus'])
if match:
found_viruses[match.group(1)] += 1
else:
found_viruses[parsed_data['virus']] += 1
else:
found_qpcodes[parsed_data['error-plugin']] += 1
if isThonny:
print() #seperate the [progress bar]
# Compute percentages
total_Count = columnCounts_2d[ColTotals][TOTALS]
#Column of percentages
for row in range(ColTotals):
if total_Count == 0:
percentage_of_total = 0
else:
percentage_of_total = f"{round(round(columnCounts_2d[row][TOTALS] / total_Count,4) * 100,1)}%"
columnCounts_2d[row][PERCENT] = percentage_of_total
#Row of percentages
for col in range(TOTALS):
if total_Count == 0:
percentage_of_total = 0
else:
percentage_of_total = f"{round(round(columnCounts_2d[ColTotals][col] / total_Count,4) * 100,1)}%"
columnCounts_2d[ColPercent][col] = percentage_of_total
# and drop in the 100% to make it look correct!
columnCounts_2d[ColPercent][PERCENT] = '100%'
columnCounts_2d[ColTotals][PERCENT] = '100%'
columnCounts_2d[ColPercent][TOTALS] = '100%'
#other stats
emailperhour = (totalexamined / 24)
if not spamqueuedcount == 0:
spamavg = spamavg / spamqueuedcount
if not rejectspamcount == 0:
rejectspamavg = rejectspamavg / rejectspamcount
if not hamcount == 0:
hamavg = hamavg / hamcount
# Now scan for the other lines in the log of interest
found_countries = defaultdict(int)
geoip_pattern = re.compile(r".*check_badcountries: GeoIP Country: (.*)")
dmarc_pattern = re.compile(r".*dmarc: pass")
helo_pattern = re.compile(r".*Accepted connection.*?from (\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) \/ ([\w.-]+)")
connect_type_pattern = re.compile(r".*connect via (.*)")
total_countries = 0
DMARCOkCount = 0
totalinternalsmtpsessions = 0
totalexternalsmtpsessions = 0
i = 0
j = 0
log_len = len(log_entries)
connection_type_counts = defaultdict(int)
#print(f"Con:{connection_type_counts}")
if log_len > 0:
if isThonny:
print_progress_bar(0, log_len, prefix='Progress:', suffix='Complete', length=50)
for data in log_entries:
i += 1
if isThonny:
print_progress_bar(i, log_len, prefix='Scanning for sub tables:', suffix='Complete', length=50)
# Match initial connection message
IsInternal = True
try:
match = helo_pattern.match(data[1])
if match:
ip = match.group(1)
fqdn = match.group(2)
if is_private_ip(ip):
totalinternalsmtpsessions += 1
else:
totalexternalsmtpsessions += 1
IsInternal = False
continue
except Exception as e:
print(f" Helo pattern error {e} {data[1]} {analysis_date}")
continue
#Pull out Geoip countries for analysis table
try:
match = geoip_pattern.match(data[1])
if match:
j += 1
country = match.group(1)
found_countries[country] += 1
total_countries += 1
continue
except Exception as e:
print(f"Geoip pattern error {e} {data[1]} {analysis_date}")
continue
#Pull out DMARC approvals
match = dmarc_pattern.match(data[1])
if match:
DMARCOkCount += 1
continue
#Pull out type of connection
match = connect_type_pattern.match(data[1])
if match:
connection_type = match.group(1)
#print(f"ct:{connection_type}")
connection_type_counts[connection_type] += 1
#print(f"Count:{connection_type_counts[connection_type]}")
continue
#Compute next and previous dates
day_format = "%Y-%m-%d"
# Convert the time string to a datetime object
date_obj = datetime.strptime(analysis_date, day_format)
# Compute the next date by adding one day
next_date = date_obj + timedelta(days=1)
# Compute the previous date by subtracting one day
previous_date = date_obj - timedelta(days=1)
# Convert the datetime objects back to strings in the desired format
next_date_str = next_date.strftime(day_format)
previous_date_str = previous_date.strftime(day_format)
# Create graphs of data
yLabels = [f'{i:02d}:00' for i in range(len(columnCounts_2d))]
stacked_Bar_html = create_stacked_bar_graph(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'stacked_bar_'+analysis_date+'.html')
heatmap_html = create_heatmap(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'heatmap_'+analysis_date+'.html')
line_graph_html = create_line_chart(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'line_graph_'+analysis_date+'.html')
#Now apply the results to the chameleon template - main table
# Path to the template file
template_path = template_dir+'mailstats.html.pt'
# Load the template
with open(template_path, 'r') as template_file:
template_content = template_file.read()
#Use the hello string to create a suitable heading for the web page
html_title = hello_string.replace("Printed at"," <span class='greyed-out'>Printed at")
html_title += "</span>"
# Create a Chameleon template instance
try:
template = PageTemplate(template_content)
# Render the template with the 2D array data and column headers
try:
rendered_html = template(array_2d=columnCounts_2d, column_headers=columnHeaders,
reporting_date=analysis_date, title=html_title,
version=version_string,
nolinks=nolinks,
stacked_bar_graph=stacked_Bar_html,
heatmap=heatmap_html,
line_graph=line_graph_html,
PreviousDate=previous_date_str,
NextDate=next_date_str,
DomainName=DomainName,
)
except Exception as e:
print(f"Chameleon template Exception {e}")
except Exception as e:
print(f"Chameleon render Exception {e}")
total_html = rendered_html
# Add in the header information
rendered_html = get_heading()
total_html = insert_string_after(total_html,rendered_html, "<!---Add in header information here -->")
#add in the subservient tables..
#qpsmtd codes
#print(f"{found_qpcodes}")
qpsmtpd_headers = ["Reason",'Count','Percent']
qpsmtpd_title = 'Qpsmtpd codes league table'
rendered_html = render_sub_table(qpsmtpd_title,qpsmtpd_headers,found_qpcodes)
# Add it to the total
total_html = insert_string_after(total_html,rendered_html, "<!---Add in sub tables here -->")
#Geoip Country codes
geoip_headers = ['Country','Count','Percent','Rejected?']
geoip_title = 'Geoip results'
rendered_html = render_sub_table(geoip_title,geoip_headers,found_countries,get_character_in_reject_list)
# Add it to the total
total_html = insert_string_after(total_html,rendered_html, "<!---Add in sub tables here -->")
#Junk mails
junk_mail_count_headers = ['Usernane','Count', 'Percent']
junk_mail_counts = scan_mail_users()
junk_mail_count_title = 'Junk mail counts'
rendered_html = render_sub_table(junk_mail_count_title,junk_mail_count_headers,junk_mail_counts)
# Add it to the total
total_html = insert_string_after(total_html,rendered_html, "<!---Add in sub tables here -->")
#virus codes
virus_headers = ["Virus",'Count','Percent']
virus_title = 'Virus types found'
rendered_html = render_sub_table(virus_title,virus_headers,found_viruses)
# Add it to the total
total_html = insert_string_after(total_html,rendered_html, "<!---Add in sub tables here -->")
#Recipient counts
#print(f"{recipients_found}")
recipient_count_headers = ["Email",'Queued','Rejected','Spam tagged','Accepted Percent']
recipient_count_title = 'Recipient count and status '
rendered_html = render_sub_table(recipient_count_title,recipient_count_headers,recipients_found)
# Add it to the total
total_html = insert_string_after(total_html,rendered_html, "<!---Add in sub tables here -->")
if saveData:
# Close the connection
cursor.close()
conn.close()
# Write the rendered HTML to a file
output_path = html_page_dir+'mailstats_for_'+analysis_date
output_path = output_path.replace(' ','_')
with open(output_path+'.html', 'w') as output_file:
output_file.write(total_html)
#and create a text version if the local version of html2text is suffiicent
if get_html2text_version() == '2019.9.26':
# Get a temporary file name
temp_file_name = tempfile.mktemp()
html_to_text(output_path+'.html',temp_file_name)
print(f"Rendered HTML saved to {temp_file_name}")
# and save it if required
if not notextfile:
text_file_path = output_path+'.txt'
# and rename it
os.rename(temp_file_name, text_file_path)
else:
text_file_path = temp_file_name
else:
text_file_path = ""
html_content = None
text_content = None
#Now see if Email required
if EmailTextOrHTML:
if EmailTextOrHTML == "HTML" or EmailTextOrHTML == "Both":
# Send html email (default))
filepath = html_page_dir+"mailstats_for_"+analysis_date+".html"
html_content = read_html_from_file(filepath)
# Replace the Navigation by a "See in browser" prompt
replace_str = f"<div class='divseeinbrowser' style='text-align:center;'><a class='seeinbrowser' href='http://{DomainName}/mailstats/mailstats_for_{analysis_date}.html'>See in browser</a></div>"
html_content = replace_between(html_content, "<div class='linksattop'>", ">Next</a></div>", replace_str)
if not noemailfile:
# Write out the email html to a web page
email_file = html_page_dir + "Email_mailstats_for_"+analysis_date
with open(email_file+'.html', 'w') as output_file:
output_file.write(html_content)
if EmailTextOrHTML == "Text" or EmailTextOrHTML == "Both":
#filepath = html_page_dir+"mailstats_for_"+analysis_date+".txt"
if not text_file_path == "":
text_content = read_text_from_file(text_file_path)
else:
text_content = "No text avaiable as html2text (was not "
if EMailSMTPUser:
# Send authenticated
print("Sending authenticated")
send_email(
html_content=email_content,
subject="Mailstats for "+analysis_date,
from_email="mailstats@"+DomainName,
to_email=EmailAddress,
smtp_server=EmailHost,
smtp_port=EmailPort,
HTML_content=html_content,
Text_content=text_content,
smtp_user=EMailSMTPUser,
smtp_password=EMailSMTPPassword
)
else:
# No authentication
print(f"Sending non authenticated {EmailAddress} {EmailHost}")
try:
send_email(
subject="Mailstats for "+analysis_date,
from_email="mailstats@"+DomainName,
to_email=EmailAddress,
smtp_server=EmailHost,
smtp_port=EmailPort,
HTML_content=html_content,
Text_content=text_content
)
except Exception as e:
print(f"Email Exception {e}")