1893 lines
69 KiB
Python

#
# Mailstats.py
#
#
# This script provides daily SpamFilter statistics.
#
# Mailstats
#
# usage: mailstats.py [-h] [-d DATE] [-ef EMAILFILE] [-tf TEXTFILE] [--version]
# [-db DBSAVE]
#
# Mailstats
#
# optional arguments:
# -h, --help show this help message and exit
# -d DATE, --date DATE Specify a valid date (yyyy-mm-dd) for the analysis
# -ef EMAILFILE, --emailfile EMAILFILE
# Save an html file of the email sent (y/N)
# -tf TEXTFILE, --textfile TEXTFILE
# Save a txt file of the html page (y/N)
# --version show program's version number and exit
# -db DBSAVE, --dbsave DBSAVE
# Force save of summary logs in DB (y/N)
#
#
# (June 2024 - bjr) Re-written in Python from Mailstats.pl (Perl) to conform to SME11 / Postfix / qpsmtpd log formats
# and html output added
#
# Todo:
# 2 Other stats
# 3. Extra bits for sub tables - DONE
# 4. Percent char causes sort to fail - look at adding it in the template - DONE
# 5. Chase disparity in counts betweeen old mailstats and this - Some of it DONE
# 6. Count emails delivered over ports 25/587/465 (SMTPS?)
# 7. Arrange that the spec file overwrites the date even if it has been overwritten before
# 8. Allow mailstats pages to be public or private (=> templating the fragment)) - DONE
# 9. Update format of the summarylogs page - DONE but still WIP
# 10. Add in links to summarylogs in web pages - DONE but still WIP
# 11. Move showSummaryLogs.php to individual directory "/opt/mailstats/php"
# 12. Make sure other directories not visible through apache
#
# Future:
# 1. Write summary line for each transaction to DB and link to it through cell in main table -DONE (write to DB))
# 2. Make DB password something more obscure.
# 3. Prune the DB according to parameter - delete corresponding page in opt/mailstats/html
# 4. Prune the html directory according to parameter
#
# Even more Future (if ever))
# 2. Link each summary line through DB to actual transaction lines
#
# Centos7:
# yum install python3-chameleon --enablerepo=epel
# yum install html2text --enablerepo=epel
# yum install mysql-connector-python --enablerepo=epel (not sure if this is required as well the pip3))
# pip3 install mysql-connector
# pip3 install numpy
# pip3 install plotly
# pip3 install pandas
# NOTE: No matplotlib
#
# Rocky8: (probably - not yet checked this)
#
# dnf install python3-chameleon --enablerepo=epel
# dnf install html2text --enablerepo=epel
# dnf install python3-matplotlib
# pip3 install numpy
# pip3 pymysql
# pip3 install pandas
#
#
from datetime import datetime, timedelta
import sys
from chameleon import PageTemplateFile,PageTemplate
import pkg_resources
import re
import ipaddress
import subprocess
import os
from collections import defaultdict
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import codecs
import argparse
import tempfile
#import mysql.connector
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
import colorsys
import pymysql
import json
from systemd import journal
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, # Default level of messages to log
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(), # Log to console
logging.FileHandler("/opt/mailstats/logs/mailstats.log") # Log to a file
])
enable_graphs = True;
try:
import matplotlib.pyplot as plt
except ImportError:
logging.info("Matplotlib is not installed - no graphs")
enable_graphs = False;
Mailstats_version = '1.2'
build_date_time = "2024-06-18 12:03:40OURCE"
build_date_time = build_date_time[:19] #Take out crap that sneaks in.
#if build_date_time == "2024-06-18 12:03:40OURCE":
# build_date_time = "Unknown"
script_dir = os.path.dirname(os.path.abspath(__file__))
data_file_path = script_dir+'/../..' #back to the top
now = datetime.now()
yesterday = now - timedelta(days=1)
formatted_yesterday = yesterday.strftime("%Y-%m-%d")
#html_page_path = data_file_path+"/home/e-smith/files/ibays/mesdb/html/mailstats/"
html_page_dir = data_file_path+"/opt/mailstats/html/"
template_dir = data_file_path+"/opt/mailstats/templates/"
logs_dir = data_file_path+"/opt/mailstats/logs/"
# Column numbering (easy to renumber or add one in)
Hour = 0
WebMail = Hour + 1
Local = WebMail + 1
MailMan = Local + 1
Relay = MailMan + 1
DMARC = Relay + 1
Virus = DMARC + 1
RBLDNS = Virus + 1
Geoip = RBLDNS + 1
NonConf = Geoip + 1
RejLoad = NonConf + 1
Karma = RejLoad + 1
DelSpam = Karma + 1
QuedSpam = DelSpam + 1
Ham = QuedSpam + 1
TOTALS = Ham + 1
PERCENT = TOTALS + 1
ColTotals = 24
ColPercent = 25
def replace_bracket_content(input_filename, output_filename):
import re
with open(input_filename, 'r', encoding='utf-8') as infile:
content = infile.read()
# Pattern to capture digits/spaces inside brackets
pattern = r'\[([\d\s]*)\]\(\./showSummaryLogs\.php\?date=\d{4}-\d{2}-\d{2}&hour=\d{1,2}\)'
# Pad captured group to 10 characters
replaced_content = re.sub(pattern, lambda m: f"{m.group(1):8}", content)
with open(output_filename, 'w', encoding='utf-8') as outfile:
outfile.write(replaced_content)
return f"Replacements completed. Output written to {output_filename}"
def get_logs_from_Journalctl(date='yesterday'):
# JSON-pretty output example from journalctl
# {
# "__CURSOR" : "s=21b4f015be0c4f1fb71ac439a8365ee7;i=385c;b=dd778625547f4883b572daf53ae93cd4;m=ca99d6d;t=62d6316802b05;x=71b24e9f19f3b99a",
# "__REALTIME_TIMESTAMP" : "1738753462774533",
# "__MONOTONIC_TIMESTAMP" : "212442477",
# "_BOOT_ID" : "dd778625547f4883b572daf53ae93cd4",
# "_MACHINE_ID" : "f20b7edad71a44e59f9e9b68d4870b19",
# "PRIORITY" : "6",
# "SYSLOG_FACILITY" : "3",
# "_UID" : "0",
# "_GID" : "0",
# "_SYSTEMD_SLICE" : "system.slice",
# "_CAP_EFFECTIVE" : "1ffffffffff",
# "_TRANSPORT" : "stdout",
# "_COMM" : "openssl",
# "_EXE" : "/usr/bin/openssl",
# "_HOSTNAME" : "sme11.thereadclan.me.uk",
# "_STREAM_ID" : "8bb0ef8920af4ae09b424a2e30abcdf7",
# "SYSLOG_IDENTIFIER" : "qpsmtpd-init",
# "MESSAGE" : "Generating DH parameters, 2048 bit long safe prime, generator 2",
# "_PID" : "2850",
# }
# and the return from here:
# {
# '_TRANSPORT': 'stdout', 'PRIORITY': 6, 'SYSLOG_FACILITY': 3, '_CAP_EFFECTIVE': '0', '_SYSTEMD_SLICE': 'system.slice',
# '_BOOT_ID': UUID('465c6202-36ac-4a8b-98e9-1581e8fec68f'), '_MACHINE_ID': UUID('f20b7eda-d71a-44e5-9f9e-9b68d4870b19'),
# '_HOSTNAME': 'sme11.thereadclan.me.uk', '_STREAM_ID': '06c860deea374544a2b561f55394d728', 'SYSLOG_IDENTIFIER': 'qpsmtpd-forkserver',
# '_UID': 453, '_GID': 453, '_COMM': 'qpsmtpd-forkser', '_EXE': '/usr/bin/perl',
# '_CMDLINE': '/usr/bin/perl -Tw /usr/bin/qpsmtpd-forkserver -u qpsmtpd -l 0.0.0.0 -p 25 -c 40 -m 5',
# '_SYSTEMD_CGROUP': '/system.slice/qpsmtpd.service', '_SYSTEMD_UNIT': 'qpsmtpd.service',
# '_SYSTEMD_INVOCATION_ID': 'a2b7889a307748daaeb60173d31c5e0f', '_PID': 93647,
# 'MESSAGE': '93647 Connection from localhost [127.0.0.1]',
# '__REALTIME_TIMESTAMP': datetime.datetime(2025, 4, 2, 0, 1, 11, 668929),
# '__MONOTONIC_TIMESTAMP': journal.Monotonic(timestamp=datetime.timedelta(11, 53118, 613602),
# bootid=UUID('465c6202-36ac-4a8b-98e9-1581e8fec68f')),
# '__CURSOR': 's=21b4f015be0c4f1fb71ac439a8365ee7;i=66d2c;b=465c620236ac4a8b98e91581e8fec68f;m=e9a65ed862;t=
# }
"""
Retrieve and parse journalctl logs for a specific date and units,
returning them as a sorted list of dictionaries.
"""
try:
# Parse the input date to calculate the start and end of the day
if date.lower() == "yesterday":
target_date = datetime.now() - timedelta(days=1)
else:
target_date = datetime.strptime(date, "%Y-%m-%d")
# Define the time range for the specified date
since = target_date.strftime("%Y-%m-%d 00:00:00")
until = target_date.strftime("%Y-%m-%d 23:59:59")
# Convert times to microseconds for querying
since_microseconds = int(datetime.strptime(since, "%Y-%m-%d %H:%M:%S").timestamp() * 1_000_000)
until_microseconds = int(datetime.strptime(until, "%Y-%m-%d %H:%M:%S").timestamp() * 1_000_000)
# Open the systemd journal
j = journal.Reader()
# Set filters for units
j.add_match(_SYSTEMD_UNIT="qpsmtpd.service")
j.add_match(_SYSTEMD_UNIT="uqpsmtpd.service")
j.add_match(_SYSTEMD_UNIT="sqpsmtpd.service")
# Filter by time range
j.seek_realtime(since_microseconds // 1_000_000) # Convert back to seconds for seeking
# Retrieve logs within the time range
logs = []
for entry in j:
entry_timestamp = entry.get('__REALTIME_TIMESTAMP', None)
entry_microseconds = int(entry_timestamp.timestamp() * 1_000_000)
if entry_timestamp and since_microseconds <= entry_microseconds <= until_microseconds:
logs.append(entry)
# Sort logs by __REALTIME_TIMESTAMP in ascending order
sorted_logs = sorted(logs, key=lambda x: x.get("__REALTIME_TIMESTAMP", 0))
return sorted_logs
except Exception as e:
logging.error(f"Unexpected error: {e}")
return {}
def transform_to_dict(data, keys, iso_date):
"""
Transforms a 26x17 list of lists into a list of dictionaries with specified keys.
Args:
data (list): A 26x17 list of lists.
keys (list): A 1D array specifying the keys for the dictionaries.
iso_date (str): A date in ISO format to prepend to each row number.
Returns:get_JSOON
list: A list of dictionaries with transformed data.
"""
# Validate input dimensions
if len(data) != 26:
raise ValueError("Input data must have 26 rows.")
if len(keys) != len(data[0]): # Account for the new column
raise ValueError(f"Keys must match the number of columns after transformation {len(keys)} {len(data[0])}")
# Remove rows 25 and 26
filtered_data = data[:24]
# and same for keys
modified_keys = keys[1:-2]
# Add new column with ISO date and row number
transformed_data = []
for i, row in enumerate(filtered_data):
new_column_value = f"{i}" #f"{iso_date},{i}"
transformed_row = [new_column_value] + row[1:-2] # Remove first and last two columns
transformed_data.append(transformed_row)
# Convert each row into a dictionary using supplied keys
result = [dict(zip(["Time"] + modified_keys, row)) for row in transformed_data]
return result
def create_graph(data_dict, graph_type="line", output_file="graph.png",iso_date='1970-01-01'):
"""
Creates a graph from nested list data with hours as x-axis.
Args:
data_dict (list): List structure where:
- Each element is a list representing hour data
- First element is the hour (0-23)
- Remaining elements are counts for different types/categories
graph_type (str): Type of graph to create ("line", "bar", "scatter", "pie").
output_file (str): Path to save the image file.
"""
# Check if data is empty
if not data_dict:
raise ValueError("Input data cannot be empty")
# Extract hours (from the "NewColumn" key)
hours = [row["Time"] for row in data_dict] # First column is the ISO date + row number
# Extract types (keys excluding "NewColumn")
types = [key for key in data_dict[0].keys() if key != "Time"] # Dynamically get keys except "NewColumn"
# Extract counts for each type
counts = {typ: [row[typ] for row in data_dict] for typ in types}
plt.figure(figsize=(10, 6)) # Create a figure
# Generate different types of graphs based on the input parameter
if graph_type == "line":
for typ in types:
plt.plot(hours, counts[typ], label=typ, marker='o')
plt.title(f"Line Graph for {iso_date}")
plt.xlabel("Hours")
plt.ylabel("Counts")
elif graph_type == "bar":
bottom = [0] * len(hours)
for typ in types:
plt.bar(hours, counts[typ], bottom=bottom, label=typ)
bottom = [b + y for b, y in zip(bottom, counts[typ])]
plt.title(f"Bar Graph for {iso_date}")
plt.xlabel("Hours")
plt.ylabel("Counts")
elif graph_type == "scatter":
for typ in types:
plt.scatter(hours, counts[typ], label=typ)
plt.title(f"Scatter Plot for {iso_date}")
plt.xlabel("Hours")
plt.ylabel("Counts")
elif graph_type == "pie":
total_counts = {typ: sum(counts[typ]) for typ in types}
total_sum = sum(total_counts.values())
threshold_percent = 0.01 * total_sum
# Separate filtered counts and "Other" counts
filtered_counts = {}
other_total = 0
for typ, value in total_counts.items():
if value > 0 and value >= threshold_percent:
filtered_counts[typ] = value
else:
other_total += value
# Add "Other" category if there are values below the threshold
if other_total > 0:
filtered_counts["Other"] = other_total
# Prepare data for the pie chart
labels = filtered_counts.keys()
sizes = filtered_counts.values()
# Plot the pie chart
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
plt.title(f"Pie Chart for {iso_date}")
else:
raise ValueError(f"Unsupported graph type: {graph_type}")
if graph_type != "pie":
plt.xticks(hours)
plt.grid(alpha=0.3)
plt.legend()
# Save the graph to a file
plt.tight_layout()
plt.savefig(output_file)
plt.close()
# def convert_to_numeric(data):
# """
# Converts all values in a nested list or dictionary to numeric types (int or float).
# """
# for i in range(len(data)):
# for j in range(1, len(data[i])): # Skip the first column (hour)
# try:
# data[i][j] = float(data[i][j]) # Convert to float
# except ValueError:
# raise ValueError(f"Non-numeric value found: {data[i][j]}")
# return data
def save_summaries_to_db(cursor, conn, date_str, hour, parsed_data):
# Convert parsed_data to JSON string
global count_records_to_db
json_data = json.dumps(parsed_data)
# Insert the record
insert_query = """
INSERT INTO SummaryLogs (Date, Hour, logData)
VALUES (%s, %s, %s)
"""
try:
cursor.execute(insert_query, (date_str, hour, json_data))
conn.commit()
count_records_to_db += 1
except pymysql.Error as err:
logging.error(f"DB Error {date_str} {hour} : {err}")
conn.rollback()
def is_running_under_thonny():
# Check for the 'THONNY_USER_DIR' environment variable
return 'THONNY_USER_DIR' in os.environ
# Routines to access the E-Smith dbs
def parse_entity_line(line):
"""
Parses a single line of key-value pairs.
:param line: Single line string to be parsed
:return: Dictionary with keys and values
"""
parts = line.split('|')
# First part contains the entity name and type in the format 'entity_name=type'
entity_part = parts.pop(0)
entity_name, entity_type = entity_part.split('=')
entity_dict = {'type': entity_type}
for i in range(0, len(parts)-1, 2):
key = parts[i]
value = parts[i+1]
entity_dict[key] = value
return entity_name, entity_dict
def parse_config(config_string):
"""
Parses a multi-line configuration string where each line is an entity with key-value pairs.
:param config_string: Multi-line string to be parsed
:return: Dictionary of dictionaries with entity names as keys
"""
config_dict = {}
lines = config_string.strip().split('\n')
for line in lines:
line = line.strip()
if line.startswith('#'): # Skip lines that start with '#'
continue
entity_name, entity_dict = parse_entity_line(line)
config_dict[entity_name] = entity_dict
return config_dict
def read_config_file(file_path):
"""
Reads a configuration file and parses its contents.
:param file_path: Path to the configuration file
:return: Parsed configuration dictionary
"""
with open(file_path, 'r') as file:
config_string = file.read()
return parse_config(config_string)
def get_value(config_dict, entity, key, default=None):
"""
Retrieves the value corresponding to the given key from a specific entity.
:param config_dict: Dictionary of dictionaries with parsed config
:param entity: Entity from which to retrieve the key's value
:param key: Key whose value needs to be retrieved
:param default: Default value to return if the entity or key does not exist
:return: Value corresponding to the key, or the default value if the entity or key does not exist
"""
return config_dict.get(entity, {}).get(key, default)
def is_private_ip(ip):
try:
# Convert string to an IPv4Address object
ip_addr = ipaddress.ip_address(ip)
except ValueError:
return False
# Define private IP ranges
private_ranges = [
ipaddress.ip_network('10.0.0.0/8'),
ipaddress.ip_network('172.16.0.0/12'),
ipaddress.ip_network('192.168.0.0/16'),
]
# Check if the IP address is within any of these ranges
for private_range in private_ranges:
if ip_addr in private_range:
return True
return False
def truncate_microseconds(timestamp):
# Split timestamp into main part and microseconds
try:
main_part, microseconds = timestamp.split('.')
# Truncate the last three digits of the microseconds
truncated_microseconds = microseconds[:-3]
# Combine the main part and truncated microseconds
truncated_timestamp = f"{main_part}.{truncated_microseconds}"
except Exception as e:
logging.error(f"{e} {timestamp}")
raise ValueError
# Remove the microseconds completely if they exist
return truncated_timestamp.split('.')[0]
def read_in_relevant_log_file(file_path,analysis_date=yesterday):
# Read the file and split each line into a list - timestamp and the rest
log_entries = []
skip_record_count = 0
ignore_record_count = 0
# Get the year of yesterday
yesterday = datetime.now() - timedelta(days=1)
yesterday_year = yesterday.year
line_count = 0;
with codecs.open(file_path, 'rb','utf-8', errors='replace') as file:
try:
for Line in file:
line_count += 1
#extract time stamp
try:
entry = split_timestamp_and_data(Line)
# compare with anal date
timestamp_str = entry[0]; #truncate_microseconds(entry[0])
except ValueError as e:
logging.error(f"ValueError {e} on timestamp create {timestamp_str}:{entry[0]} {entry[1]}")
skip_record_count += 1
continue
# Parse the timestamp string into a datetime object
# Ignoring extra microseconds
try:
timestamp = datetime.strptime(timestamp_str, "%b %d %H:%M:%S")
# and add in gthe year of yesterday
timestamp = timestamp.replace(year=yesterday_year)
except (ValueError, TypeError) as e:
logging.error(f"Error {e} line {line_count} on timestamp extract {timestamp_str}:{entry[1]}")
ignore_record_count += 1
continue
if timestamp.date() == analysis_date.date():
log_entries.append((timestamp, entry[1]))
else:
ignore_record_count += 1
except UnicodeDecodeError as e:
pass
return [log_entries,skip_record_count,ignore_record_count]
def filter_summary_records(log_entries):
# Return just the summary records
filtered_log_entries = []
skipped_entry_count = 0
for line in log_entries:
if '`' in line['MESSAGE']:
filtered_log_entries.append(line)
else:
skipped_entry_count += 1
return [filtered_log_entries,skipped_entry_count]
def sort_log_entries(log_entries):
# Sort the records, based on the timestamp
sorted_entries = sorted(log_entries, key=lambda x: x['__REALTIME_TIMESTAMP'])
# and return a dictionary
sorted_dict = {entry['__REALTIME_TIMESTAMP']: entry['MESSAGE'] for entry in sorted_entries}
return sorted_dict
def parse_data(data):
# Split data string into parts and map to named fields.
# Adjust the field names and parsing logic according to your data format.
# Split at the backtick - before it fields split at space, after, fields split at tab
parts = data.split('`')
fields0 = ["",""] #Add in dummy to make it the same as before, saves changing all the numbers below.
fields1 = parts[0].strip().split() if len(parts) > 0 else []
fields2 = parts[1].split('\t') if len(parts) > 1 else []
# then merge them
fields = fields0 + fields1 + fields2
# and mapping:
try:
return_dict = {
'sme': fields[0].strip() if len(fields) > 0 else None,
'qpsmtpd': fields[1].strip() if len(fields) > 1 else None,
'id': fields[2].strip() if len(fields) > 2 else None,
'action': fields[3].strip() if len(fields) > 3 else None, #5
'logterse': fields[4].strip() if len(fields) > 4 else None,
'ip': fields[5].strip() if len(fields) > 5 else None,
'sendurl': fields[6].strip() if len(fields) > 6 else None, #1
'sendurl1': fields[7].strip() if len(fields) > 7 else None, #2
'from-email': fields[8].strip() if len(fields) > 8 else None, #3
'error-reason': fields[8].strip() if len(fields) > 9 else None, #3
'to-email': fields[9].strip() if len(fields) > 9 else None, #4
'error-plugin': fields[10].strip() if len(fields) > 10 else None, #5
'action1': fields[10].strip() if len(fields) > 10 else None, #5
'error-number' : fields[11].strip() if len(fields) > 11 else None, #6
'sender': fields[12].strip() if len(fields) > 12 else None, #7
'virus': fields[12].strip() if len(fields) > 12 else None, #7
'error-msg' :fields[13].strip() if len(fields) > 13 else None, #7
'spam-status': fields[13].strip() if len(fields) > 13 else None, #8
'error-result': fields[14].strip() if len(fields) > 14 else None,#8
# Add more fields as necessary
}
except:
logging.error(f"error:len:{len(fields)}")
return_dict = {}
return return_dict
# def count_entries_by_hour(log_entries):
# hourly_counts = defaultdict(int)
# for entry in log_entries:
# # Extract hour from the timestamp
# timestamp = entry['timestamp']
# hour = datetime.datetime.strptime(timestamp, '%Y-%m-%d %H:%M:%S').strftime('%Y-%m-%d %H')
# hourly_counts[hour] += 1
# return hourly_counts
def initialize_2d_array(num_hours, column_headers_len,reporting_date):
num_hours += 1 # Adjust for the zeroth hour
# Initialize the 2D list with zeroes
return [[0] * column_headers_len for _ in range(num_hours)]
def search_2d_list(target, data):
"""
Search for a target string in a 2D list of variable-length lists of strings.
:param target: str, the string to search for
:param data: list of lists of str, the 2D list to search
:return: int, the row number where the target string is found, or -1 if not found
"""
for row_idx, row in enumerate(data):
if target in row:
return row_idx
return -1 # Return -1 if not found
def check_html2text_installed():
try:
# Check if html2text is installed by running 'which html2text'
result = subprocess.run(
['which', 'html2text'],
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
# If the command finds html2text, it will output the path
html2text_path = result.stdout.decode('utf-8').strip()
if not html2text_path:
raise FileNotFoundError
logging.info(f"html2text is installed at: {html2text_path}")
return True
except subprocess.CalledProcessError:
logging.error("html2text is not installed. Please install it using your package manager.", file=sys.stderr)
return False
def html_to_text(input_file, output_file):
if not check_html2text_installed():
sys.exit(1)
try:
# Run the html2text command with -b0 --pad-tables parameters
result = subprocess.run(
['html2text', '-b0', '--pad-tables', input_file],
check=True, # Raise a CalledProcessError on non-zero exit
stdout=subprocess.PIPE, # Capture stdout
stderr=subprocess.PIPE # Capture stderr
)
# Write the stdout from the command to the output file
with open(output_file, 'w', encoding='utf-8') as outfile:
outfile.write(result.stdout.decode('utf-8'))
logging.info(f"Converted {input_file} to {output_file}")
except subprocess.CalledProcessError as e:
logging.error(f"Error occurred: {e.stderr.decode('utf-8')}", file=sys.stderr)
sys.exit(e.returncode)
def get_html2text_version():
try:
result = subprocess.run(['html2text', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
# Ensure the result is treated as a string in Python 3.6+
return result.stdout.strip()
except subprocess.CalledProcessError as e:
logging.error(f"Error occurred while checking html2text version: {e}", file=sys.stderr)
return None
def print_progress_bar(iteration, total, prefix='', suffix='', decimals=1, length=50, fill='', print_end="\r"):
"""
Call in a loop to create a terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
length - Optional : character length of bar (Int)
fill - Optional : bar fill character (Str)
logging.error(_end - Optional : end character (e.g. "\r", "\r\n") (Str)
"""
if total == 0:
raise ValueError("Progress total is zero")
percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total)))
filled_length = int(length * iteration // total)
bar = fill * filled_length + '-' * (length - filled_length)
print(f'\r{prefix} |{bar}| {percent}% {suffix}', end=print_end)
# logging.error( New Line on Complete
if iteration == total:
print()
def insert_string_after(original:str, to_insert:str, after:str) -> str:
"""
Insert to_insert into original after the first occurrence of after.
:param original: The original string.
:param to_insert: The string to be inserted.
:param after: The set of characters after which the string will be inserted.
:return: The new string with to_insert inserted after after.
"""
position = original.find(after)
if position == -1:
logging.error(f"insert_string_after:({after}) string is not found in original")
return original
# Position of the insertion point
insert_pos = position + len(after)
return original[:insert_pos] + to_insert + original[insert_pos:]
def split_timestamp_and_data(log_entry: str) -> list:
"""
Split a log entry into timestamp and the rest of the data.
:param log_entry: The log entry as a string.
:return: A list with two entries: [timestamp, rest_of_data].
"""
# The timestamp is always the first part, up to the first space after the milliseconds
# SME11 - the timestamp looks like this: "Dec 29 07:42:00 sme11 qpsmtpd-forkserver[942177]:<the rest>"
#
match = re.match(r'(\w{3} \d{1,2} \d{2}:\d{2}:\d{2}) (.+)', log_entry)
if match:
timestamp = match.group(1)
rest_of_line = match.group(2).strip() # Strip any leading spaces
else:
timestamp = None
rest_of_line = log_entry # If no match, return the whole line
return [timestamp, rest_of_line]
def render_sub_table(table_title, table_headers, found_values, get_character=None, suppress_threshold=False):
#Check if any data provided
if len(found_values) != 0:
# Get the total
original_total = 0 # Initialize total variable
if isinstance(found_values, dict):
# If found_values is a dictionary, we operate as previously
total_sum = sum(found_values.values())
original_total = total_sum
if not BadCountries:
get_character = None
if get_character:
sub_result = [(key, value,
f"{round(value / total_sum * 100, 2)}%",
f"{get_character(key)}") for key, value in found_values.items()]
else:
sub_result = [(key, value,
f"{round(value / total_sum * 100, 2)}%" ) for key, value in found_values.items()]
elif isinstance(found_values, list):
# If found_values is a list of values
if all(isinstance(v, (int, float)) for v in found_values):
total_sum = sum(found_values)
original_total = total_sum
sub_result = [(i, value,
f"{round(value / total_sum * 100, 2)}%") for i, value in enumerate(found_values)]
# If found_values is a list of dictionaries
elif all(isinstance(v, dict) for v in found_values):
# Example assumes first key is used for identification and others are numeric
# Convert to 2D array
sub_result = [list(entry.values()) for entry in found_values]
# Calculate the total of the first numeric entry (index 1)
total = sum(row[1] for row in sub_result)
original_total = total
# Append percentage of the total for each entry
for row in sub_result:
percentage = f"{round(row[1] / total * 100, 2) if total else 0}%" # Handle division by zero
row.append(percentage)
else:
raise ValueError("found_values must be either a list of numbers or a list of dictionaries.")
else:
raise TypeError("found_values must be a dictionary or a list.")
sub_result.sort(key=lambda x: float(x[1]), reverse=True) # Sort by percentage in descending order
# Dynamic threshold calculation
if not suppress_threshold:
dynamic_threshold = max(1, 100 / (original_total**0.5)) if original_total > 0 else 0
dynamic_threshold = round(dynamic_threshold,1)
logging.info(f"Threshold for {table_title} set to {dynamic_threshold}% ")
else:
dynamic_threshold=0
absolute_floor = 50 # Minimum absolute value threshold
# Filter results using early termination
filtered_sub_result = []
for row in sub_result:
value = row[1]
percentage = (value / original_total * 100) if original_total else 0
# Exit condition: below both thresholds
if percentage < dynamic_threshold and value < absolute_floor:
break
filtered_sub_result.append(row)
sub_result = filtered_sub_result # Keep only significant rows
sub_template_path = template_dir+'mailstats-sub-table.html.pt'
# Load the template
with open(sub_template_path, 'r') as template_file:
template_content = template_file.read()
# Create a Chameleon template instance
try:
template = PageTemplate(template_content)
# Render the template with the 2D array data and column headers
try:
rendered_html = template(array_2d=sub_result, column_headers=table_headers,
title=table_title, classname=get_first_word(table_title),
threshold=dynamic_threshold)
except Exception as e:
raise ValueError(f"{table_title}: A chameleon controller render error occurred: {e}")
except Exception as e:
raise ValueError(f"{table_title}: A chameleon controller template error occurred: {e}")
else:
rendered_html = f"<div class='{get_first_word(table_title)}'><h2>{table_title}</h2>No data for {table_title}</div>"
return rendered_html
def get_character_in_reject_list(code):
if code in BadCountries:
return "*"
else:
return ""
def get_first_word(text):
return text.split(None, 1)[0]
def read_html_from_file(filepath):
"""
Reads HTML content from a given file.
Args:
filepath (str): Path to the HTML file.
Returns:
str: HTML content of the file.
"""
# Need to add in here the contents of the css file at the end of the head section.
with open(filepath, 'r', encoding='utf-8') as file:
html_contents = file.read()
logging.info("Reading from html file")
# Get Filepath
css_path = os.path.dirname(filepath)+"/../css/mailstats.css"
# Read in CSS
with open(css_path, 'r', encoding='utf-8') as file:
css_contents = file.read()
html_contents = insert_string_after(html_contents,"\n<style>"+css_contents+"</style>","<!--css here-->")
return html_contents
def read_text_from_file(filepath):
"""
Reads plain text content from a given file.
Args:
filepath (str): Path to the text file.
Returns:
str: Text content of the file.
"""
try:
with open(filepath, 'r', encoding='utf-8') as file:
return file.read()
except:
logging.error(f"{filepath} not found")
return
def send_email(subject, from_email, to_email, smtp_server, smtp_port, HTML_content=None, Text_content=None, smtp_user=None, smtp_password=None):
"""
Sends an HTML email.
Args:
html_content (str): The HTML content to send in the email.
subject (str): The subject of the email.
from_email (str): The sender's email address.
to_email (str): The recipient's email address.
smtp_server (str): SMTP server address.
smtp_port (int): SMTP server port.
smtp_user (str, optional): SMTP server username. Default is None.
smtp_password (str, optional): SMTP server password. Default is None.
"""
#Example (which works!)
# send_email(
# subject="Your subject",
# from_email="mailstats@bjsystems.co.uk",
# to_email="brianr@bjsystems.co.uk",
# smtp_server="mail.bjsystems.co.uk",
# smtp_port=25
# HTML_content=html_content,
# Text_content=Text_content,
# )
# Set up the email
msg = MIMEMultipart('alternative')
msg['Subject'] = subject
msg['From'] = from_email
msg['To'] = to_email
if HTML_content:
part = MIMEText(HTML_content, 'html')
msg.attach(part)
if Text_content:
part = MIMEText(Text_content, 'plain')
msg.attach(part)
# Sending the email
with smtplib.SMTP(smtp_server, smtp_port) as server:
server.starttls() # Upgrade the connection to secure
if smtp_user and smtp_password:
server.login(smtp_user, smtp_password) # Authenticate only if credentials are provided
server.sendmail(from_email, to_email, msg.as_string())
def replace_between(text, start, end, replacement):
# Escaping start and end in case they contain special regex characters
pattern = re.escape(start) + '.*?' + re.escape(end)
# Using re.DOTALL to match any character including newline
replaced_text = re.sub(pattern, replacement, text, flags=re.DOTALL)
return replaced_text
def get_heading():
#
# Needs from anaytsis
# SATagLevel - done
# SARejectLevel - done
# warnnoreject - done
# totalexamined - done
# emailperhour - done
# spamavg - done
# rejectspamavg - done
# hamavg - done
# DMARCSendCount - done
# hamcount - done
# DMARCOkCount - deone
# Clam Version/DB Count/Last DB update
clam_output = subprocess.getoutput("freshclam -V")
clam_info = f"Clam Version/DB Count/Last DB update: {clam_output}"
# SpamAssassin Version
sa_output = subprocess.getoutput("spamassassin -V")
sa_info = f"SpamAssassin Version: {sa_output}"
# Tag level and Reject level
tag_reject_info = f"Tag level: {SATagLevel}; Reject level: {SARejectLevel} {warnnoreject}"
# SMTP connection stats
smtp_stats = f"External SMTP connections accepted: {totalexternalsmtpsessions}\n"\
f"Internal SMTP connections accepted: {totalinternalsmtpsessions}"
if len(connection_type_counts)>0:
for connection_type in connection_type_counts.keys():
smtp_stats += f"\nCount of {connection_type} connections: {connection_type_counts[connection_type]}"
if len(total_ports)>0:
for port_number in total_ports.keys():
smtp_stats += f"\nCount of port {port_number} connections: {total_ports[port_number]}"
smtp_stats = smtp_stats + f"\nEmails per hour: {emailperhour:.1f}/hr\n"\
f"Average spam score (accepted): {spamavg or 0:.2f}\n"\
f"Average spam score (rejected): {rejectspamavg or 0:.2f}\n"\
f"Average ham score: {hamavg or 0:.2f}\n"\
f"Number of DMARC reporting emails sent: {DMARCSendCount or 0} (not shown on table)"
# DMARC approved emails
dmarc_info = ""
if hamcount != 0:
dmarc_ok_percentage = DMARCOkCount * 100 / hamcount
dmarc_info = f"Number of emails approved through DMARC: {DMARCOkCount or 0} ({dmarc_ok_percentage:.2f}% of Ham count)"
# Accumulate all strings
header_str = "\n".join([clam_info, sa_info, tag_reject_info, smtp_stats, dmarc_info])
# switch newlines to <br />
header_str = header_str.replace("\n","<br />")
return header_str
def scan_mail_users():
#
# Count emails left in junkmail folders for each user
#
base_path = '/home/e-smith/files/users'
users_info = defaultdict(int)
# List of junk mail directories to check
junk_mail_directories = [
'Maildir/.Junk/cur',
'Maildir/.Junk/new',
'Maildir/.Junkmail/cur',
'Maildir/.Junkmail/new'
'Maildir/.junk/cur',
'Maildir/.junk/new',
'Maildir/.junkmail/cur',
'Maildir/.junkmail/new'
]
# Iterate through each user directory
for user in os.listdir(base_path):
user_path = os.path.join(base_path, user)
# Check if it is a directory
if os.path.isdir(user_path):
total_junk_count = 0
# Check each junk mail path and accumulate counts
for junk_dir in junk_mail_directories:
junk_mail_path = os.path.join(user_path, junk_dir)
# Check if the Junk directory actually exists
if os.path.exists(junk_mail_path):
try:
# Count the number of junk mail files in that directory
junk_count = len(os.listdir(junk_mail_path))
total_junk_count += junk_count
except Exception as e:
logging.error(f"Error counting junk mails in {junk_mail_path} for user {user}: {e}")
if total_junk_count != 0:
users_info[user] = total_junk_count
return users_info
def get_first_email_with_domain(email_string, domain):
"""
Returns the first email address in the comma-separated string that matches the specified domain.
If there is only one email, it returns that email regardless of the domain.
Args:
email_string (str): A string of comma-separated email addresses.
domain (str): The domain to filter email addresses by.
Returns:
str: The first email address that matches the domain, or the single email if only one is provided, or None if no match is found.
"""
# Remove leading and trailing whitespace and split the email string
emails = [email.strip() for email in email_string.split(',')]
# Check if there is only one email
if len(emails) == 1:
return emails[0] # Return the single email directly
# Iterate through the list of emails
for email in emails:
# Check if the email ends with the specified domain
if email.endswith('@' + domain):
return email # Return the first matching email
return None # Return None if no matching email is found
def display_keys_and_values(data):
"""
Display all keys and values for a list of dictionaries or an array (list of lists).
Args:
data (list): A list of dictionaries or a list of lists.
"""
if not isinstance(data, list):
raise ValueError("Input must be a list.")
if all(isinstance(item, dict) for item in data):
# Handle list of dictionaries
for index, dictionary in enumerate(data):
print(f"Item {index + 1}:")
for key, value in dictionary.items():
print(f" {key}: {value}")
print() # Add a blank line between items
elif all(isinstance(item, list) for item in data):
# Handle array (list of lists)
for index, item in enumerate(data):
print(f"Item {index + 1}:")
for i, value in enumerate(item):
print(f" Column {i + 1}: {value}")
print() # Add a blank line between items
else:
raise ValueError("Input must be a list of dictionaries or a list of lists.")
def extract_blacklist_domain(text):
match = re.search(r'http://www\.surbl\.org', text)
if match:
return "www.surbl.org"
return None
if __name__ == "__main__":
try:
chameleon_version = pkg_resources.get_distribution("Chameleon").version
except pkg_resources.DistributionNotFound:
chameleon_version = "Version information not available"
python_version = sys.version
#python_version = python_version[:8]
python_version = re.match(r'^\d+\.\d+\.\d+',python_version).group(0); #Extract the version number
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y-%m-%d %H:%M")
# Command line parameters
parser = argparse.ArgumentParser(description="Mailstats")
parser.add_argument('-d', '--date', help='Specify a valid date (yyyy-mm-dd) for the analysis', default=formatted_yesterday)
parser.add_argument('-ef', '--emailfile', help='Save an html file of the email sent (y/N)', default='n')
parser.add_argument('-tf', '--textfile', help='Save a txt file of the html page (y/N)', default='n')
parser.add_argument('--version', action='version', version='%(prog)s '+Mailstats_version+" built on "+build_date_time)
parser.add_argument('-db', '--dbsave', help='Force save of summary logs in DB (y/N)', default='n')
args = parser.parse_args()
analysis_date = args.date
# and check its format is valid
try:
datetime.strptime(analysis_date, '%Y-%m-%d')
except ValueError:
logging.error("Specify a valid date (yyyy-mm-dd) for the analysis")
quit(1)
anaysis_date_obj = datetime.strptime(analysis_date, '%Y-%m-%d')
noemailfile = args.emailfile.lower() == 'n'
notextfile = args.textfile.lower() == 'n'
isThonny = is_running_under_thonny()
forceDbSave = args.dbsave.lower() == 'y'
#E-Smith Config DBs
if isThonny:
db_dir = "/home/brianr/SME11Build/GITFiles/smecontribs/smeserver-mailstats/"
else:
db_dir = "/home/e-smith/db/"
#From SMEServer DB
ConfigDB = read_config_file(db_dir+"configuration")
DomainName = get_value(ConfigDB, "DomainName", "type") #'bjsystems.co.uk' # $cdb->get('DomainName')->value;
SystemName = get_value(ConfigDB, "SystemName", "type")
hello_string = "Mailstats:"+Mailstats_version+' for '+SystemName+"."+DomainName+" for "+analysis_date+" printed at:"+formatted_datetime
logging.info(hello_string)
version_string = "Chameleon:"+chameleon_version+" Python:"+python_version
if isThonny:
version_string = version_string + "...under Thonny"
logging.info(f"{version_string} and built on {build_date_time}")
RHSenabled = get_value(ConfigDB, "qpsmtpd", "RHSBL","disabled") == "enabled" #True #( $cdb->get('qpsmtpd')->prop('RHSBL') eq 'enabled' );
DNSenabled = get_value(ConfigDB, "qpsmtpd", "DNSBL","disabled") == "enabled" #True #( $cdb->get('qpsmtpd')->prop('DNSBL') eq 'enabled' );
SARejectLevel = int(get_value(ConfigDB, "spamassassin", "RejectLevel","12")) #12 #$cdb->get('spamassassin')->prop('RejectLevel');
SATagLevel = int(get_value(ConfigDB, "spamassassin", "TagLevel","4")) #4 #$cdb->get('spamassassin')->prop('TagLevel');
if SARejectLevel == 0:
warnnoreject = "(*Warning* 0 = no reject)"
else:
warnnoreject = ""
EmailAddress = get_value(ConfigDB,"mailstats","Email","admin@"+DomainName)
if '@' not in EmailAddress:
EmailAddress = EmailAddress+"@"+DomainName
EmailTextorHTML = get_value(ConfigDB,"mailstats","TextorHTML","Both") #Text or Both or None
EmailHost = get_value(ConfigDB,"mailstats","EmailHost","localhost") #Default will be localhost
EmailPort = int(get_value(ConfigDB,"mailstats","EmailPort","25"))
EMailSMTPUser = get_value(ConfigDB,"mailstats","EmailUser") #None = default => no authenticatioon needed
EMailSMTPPassword = get_value(ConfigDB,"mailstats","EmailPassword")
BadCountries = get_value(ConfigDB,"qpsmtpd","BadCountries")
wanted_mailstats_email = get_value(ConfigDB,"mailstats","CountMailstatsEmail", "no")
count_records_to_db = 0;
# Db save control
saveData = get_value(ConfigDB,"mailstats","SaveDataToMySQL","no") == 'yes' or forceDbSave
logging.info(f"Save Mailstats to DB set:{saveData} ")
if saveData:
# Connect to MySQL DB for saving
DBName = "mailstats"
DBHost = get_value(ConfigDB, 'mailstats', 'DBHost', "localhost")
DBPort = int(get_value(ConfigDB, 'mailstats', 'DBPort', "3306")) # Ensure port is an integer
DBPassw = 'mailstats'
DBUser = 'mailstats'
UnixSocket = "/var/lib/mysql/mysql.sock"
# Try to establish a database connection
try:
conn = pymysql.connect(
host=DBHost,
user=DBUser,
password=DBPassw,
database=DBName,
port=DBPort,
unix_socket=UnixSocket,
cursorclass=pymysql.cursors.DictCursor # Optional: use DictCursor for dict output
)
cursor = conn.cursor()
# Check if the table exists before creating it
check_table_query = "SHOW TABLES LIKE 'SummaryLogs'"
cursor.execute(check_table_query)
table_exists = cursor.fetchone()
if not table_exists:
# Create table if it doesn't exist
cursor.execute("""
CREATE TABLE IF NOT EXISTS SummaryLogs (
id INT AUTO_INCREMENT PRIMARY KEY,
Date DATE,
Hour INT,
logData TEXT
)
""")
# Delete existing records for the given date
try:
delete_query = """
DELETE FROM SummaryLogs
WHERE Date = %s
"""
cursor.execute(delete_query, (analysis_date,)) # Don't forget the extra comma for tuple
# Get the number of records deleted
rows_deleted = cursor.rowcount
if rows_deleted > 0:
logging.info(f"Deleted {rows_deleted} rows for {analysis_date} ")
except pymysql.Error as e:
logging.error(f"SQL Delete failed ({delete_query}) ({e}) ")
except pymysql.Error as e:
logging.error(f"Unable to connect to {DBName} on {DBHost} port {DBPort} error ({e}) ")
saveData = False
nolinks = not saveData
# Not sure we need these...
# if (ConfigDB,"qpsmtpd","RHSBL").lower() == 'enabled':
# RBLList = get_value(ConfigDB,"qpsmtpd","RBLList")
# else:
# RBLList = ""
# if (ConfigDB,"qpsmtpd","RBLList").lower() == 'enabled':
# SBLLIst = get_value(ConfigDB,"qpsmtpd","SBLLIst")
# else:
# RBLList = ""
# if (ConfigDB,"qpsmtpd","RBLList").lower() == 'enabled':
# UBLList = get_value(ConfigDB,"qpsmtpd","UBLLIst")
# else:
# RBLList = ""
FetchmailIP = '127.0.0.200'; #Apparent Ip address of fetchmail deliveries
WebmailIP = '127.0.0.1'; #Apparent Ip of Webmail sender
localhost = 'localhost'; #Apparent sender for webmail
FETCHMAIL = 'FETCHMAIL'; #Sender from fetchmail when Ip address not 127.0.0.200 - when qpsmtpd denies the email
MAILMAN = "bounces"; #sender when mailman sending when orig is localhost
DMARCDomain="dmarc"; #Pattern to recognised DMARC sent emails (this not very reliable, as the email address could be anything)
DMARCOkPattern="dmarc: pass"; #Pattern to use to detect DMARC approval
num_hours = 25 # Represents hours from 0 to 23 - adds extra one for column totals and another for percentages
#log_file = logs_dir+'current.log'
#log_entries,skip_count,ignored_count = read_in_relevant_log_file(log_file,anaysis_date_obj)
log_entries = get_logs_from_Journalctl(analysis_date)
logging.info(f"Found {len(log_entries)} entries in log for for {anaysis_date_obj.strftime('%Y-%m-%d')}") #Ignored: {ignored_count} skipped: {skip_count}")
summary_log_entries,skip_count = filter_summary_records(log_entries)
logging.info(f"Found {len(summary_log_entries)} summary entries and skipped {skip_count} entries")
sorted_log_dict = sort_log_entries(summary_log_entries)
logging.info(f"Sorted {len(sorted_log_dict)} entries")
#print(f"{sorted_log_dict}")
#quit(1)
columnHeaders = ['Count','WebMail','Local','MailMan','Relay','DMARC','Virus','RBL/DNS','Geoip.','Non.Conf.','Karma','Rej.Load','Del.Spam','Qued.Spam?',' Ham','TOTALS','PERCENT']
# dict for each colum identifying plugin that increments count
columnPlugin = [''] * 17
columnPlugin[Hour] = []
columnPlugin[WebMail] = []
columnPlugin[Local] = []
columnPlugin[MailMan] = []
columnPlugin[DMARC] = ['dmarc']
columnPlugin[Virus] = ['pattern_filter', 'virus::pattern_filter','virus::clamav','virus::clamdscan']
columnPlugin[RBLDNS] = ['rhsbl', 'dnsbl','uribl']
columnPlugin[Geoip] = ['check_badcountries']
columnPlugin[NonConf] = ['check_earlytalker','check_relay','check_norelay', 'require_resolvable_fromhost'
,'check_basicheaders','check_badmailfrom','check_badrcptto_patterns'
,'check_badrcptto','check_spamhelo','check_goodrcptto extn','rcpt_ok'
,'check_goodrcptto','check_smtp_forward','count_unrecognized_commands','tls','auth::auth_cvm_unix_local'
,'auth::auth_imap', 'earlytalker','resolvable_fromhost','relay','headers','mailfrom','badrcptto','helo'
,'check_smtp_forward','sender_permitted_from']
columnPlugin[RejLoad] = ['loadcheck']
columnPlugin[DelSpam] = []
columnPlugin[QuedSpam] = []
columnPlugin[Ham] = []
columnPlugin[TOTALS] = []
columnPlugin[PERCENT] = []
columnPlugin[Karma] = ['karma']
columnHeaders_len = len(columnHeaders)
columnCounts_2d = initialize_2d_array(num_hours, columnHeaders_len,analysis_date)
virus_pattern = re.compile(r"Virus found: (.*)")
found_viruses = defaultdict(int)
recipients_found = []
found_qpcodes = defaultdict(int)
total_ports = defaultdict(int)
blacklist_found = defaultdict(int)
qpcodes_pattern = re.compile(r"(\(.*\)).*'")
email_pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}' #extract email from rejected message
i = 0;
sorted_len= len(sorted_log_dict)
#unless none to show
spamavg = 0;
spamqueuedcount = 0
hamcount = 0
hamavg = 0
rejectspamcount = 0
rejectspamavg = 0
DMARCSendCount = 0
totalexamined = 0
total_qpsmtpd = 0
total_sqpsmtpd = 0
total_uqpsmtpd = 0
if sorted_len > 0:
if isThonny:
# Initial call to logging.error( the progress bar
print_progress_bar(0, sorted_len, prefix='Progress:', suffix='Complete', length=50)
count_ignored_mailstats = 0;
for timestamp, data in sorted_log_dict.items():
i += 1
totalexamined += 1
if isThonny:
print_progress_bar(i, sorted_len, prefix='Scanning for main table:', suffix='Complete', length=50)
# Count of in which hour it falls
# Parse the timestamp string into a datetime object
dt = timestamp
hour = dt.hour
# parse the data
parsed_data = parse_data(data)
#Take out the mailstats email if necessay
if wanted_mailstats_email == 'no':
if 'mailstats' in parsed_data['from-email'] and DomainName in parsed_data['from-email']:
count_ignored_mailstats +=1
continue
# Save the data here if necessary
if saveData:
save_summaries_to_db(cursor,conn,anaysis_date_obj.strftime('%Y-%m-%d'),hour,parsed_data)
#Count the number of emails through each of qpsmtpd, uqpsmtpd and sqpsmtpd
# the forkserver column in the log indicates it.
if parsed_data['qpsmtpd'].startswith ('qpsmtpd'):
total_ports['25'] +=1
elif parsed_data['qpsmtpd'].startswith ('sqpsmtpd'):
total_ports['465'] +=1
elif parsed_data['qpsmtpd'].startswith ('uqpsmtpd'):
total_ports['587'] +=1
# Increment Count in which headings it falls
#Hourly count and column total
columnCounts_2d[hour][Hour] += 1
columnCounts_2d[ColTotals][Hour] += 1
#Row Totals
columnCounts_2d[hour][TOTALS] += 1
#Total totals
columnCounts_2d[ColTotals][TOTALS] += 1
# first spot the fetchmail and 'local' deliveries.
#Local send
if DomainName in parsed_data['sendurl']:
columnCounts_2d[hour][Local] += 1
columnCounts_2d[ColTotals][Local] += 1
#Relay or webmail
elif not is_private_ip(parsed_data['ip']) and is_private_ip(parsed_data['sendurl1']) and parsed_data['action1'] == 'queued':
#Relay
columnCounts_2d[hour][Relay] += 1
columnCounts_2d[ColTotals][Relay] += 1
elif WebmailIP in parsed_data['sendurl1'] and not is_private_ip(parsed_data['ip']):
#webmail
columnCounts_2d[hour][WebMail] += 1
columnCounts_2d[ColTotals][WebMail] += 1
elif localhost in parsed_data['sendurl']:
# but not if it comes from fetchmail
if not FETCHMAIL in parsed_data['sendurl1']:
# might still be from mailman here
if MAILMAN in parsed_data['sendurl1']:
#$mailmansendcount++;
#$localsendtotal++;
columnCounts_2d[hour][MailMan] += 1
columnCounts_2d[ColTotals][MailMan] += 1
#$counts{$abshour}{$CATMAILMAN}++;
#$localflag = 1;
else:
#Or sent to the DMARC server
#check for email address in $DMARC_Report_emails string
#my $logemail = $log_items[4];
if DMARCDomain in parsed_data['from-email']: #(index($DMARC_Report_emails,$logemail)>=0) or
#$localsendtotal++;
DMARCSendCount += 1
#localflag = 1;
else:
# ignore incoming localhost spoofs
if parsed_data['error-msg'] and not 'msg denied before queued' in parsed_data['error-msg']:
#Webmail
#$localflag = 1;
#$WebMailsendtotal++;
columnCounts_2d[hour][WebMail] += 1
columnCounts_2d[ColTotals][WebMail] += 1
#$WebMailflag = 1;
else:
#$localflag = 1;
#$WebMailsendtotal++;
#$WebMailflag = 1;
columnCounts_2d[hour][WebMail] += 1
columnCounts_2d[ColTotals][WebMail] += 1
#Queued email
if parsed_data['action1'] == 'queued':
columnCounts_2d[hour][Ham] += 1
columnCounts_2d[ColTotals][Ham] += 1
# spamassassin not rejected
if parsed_data.get('spam-status') is not None and isinstance(parsed_data['spam-status'], str):
if parsed_data['spam-status'].lower().startswith('no'):
#Extract other parameters from this string
# example: No, score=-3.9
spam_pattern = re.compile(r'score=(-?\d+\.\d+) required=(-?\d+\.\d+)')
match = re.search(spam_pattern, parsed_data['spam-status'])
if match:
score = float(match.group(1))
if score < float(SATagLevel):
# Accumulate allowed score (inc negatives?)
hamavg += score
hamcount += 1
#spamassasin rejects
Isqueuedspam = False;
if parsed_data.get('spam-status') is not None and isinstance(parsed_data['spam-status'], str):
if parsed_data['spam-status'].lower().startswith('yes'):
#Extract other parameters from this string
# example: Yes, score=10.3 required=4.0 autolearn=disable
spam_pattern = re.compile(r'score=(-?\d+\.\d+) required=(-?\d+\.\d+)')
match = re.search(spam_pattern, parsed_data['spam-status'])
if match:
score = float(match.group(1))
required = float(match.group(2))
if score >= SARejectLevel:
columnCounts_2d[hour][DelSpam] += 1
columnCounts_2d[ColTotals][DelSpam] += 1
rejectspamavg += score
rejectspamcount += 1
elif score >= required:
columnCounts_2d[hour][QuedSpam] += 1
columnCounts_2d[ColTotals][QuedSpam] += 1
spamavg += score
spamqueuedcount += 1
Isqueuedspam = True #for recipient stats below
# Count the qpsmtpd codes
if parsed_data['error-plugin'].strip() == 'naughty':
if parsed_data['error-msg'].startswith("(dnsbl)"):
columnCounts_2d[hour][RBLDNS]+= 1
columnCounts_2d[ColTotals][RBLDNS]+= 1
elif parsed_data['error-msg'].startswith("(karma)"):
columnCounts_2d[hour][KARMA] += 1
columnCounts_2d[ColTotals][KARMA]+= 1
elif parsed_data['error-msg'].startswith("(helo)"):
columnCounts_2d[hour][RBLDNS] += 1
columnCounts_2d[ColTotals][RBLDNS]+= 1
else:
match = qpcodes_pattern.match(parsed_data['action1'])
if match:
rejReason = match.group(1)
found_qpcodes[parsed_data['error-plugin']+"-"+rejReason] += 1
else:
found_qpcodes[parsed_data['action1']] += 1
#Check for blacklist rejection
error_plugin = parsed_data['error-plugin'].strip()
if error_plugin == 'rhsbl' or error_plugin == 'dnsbl':
blacklist_domain = extract_blacklist_domain(parsed_data['sender'])
blacklist_found[blacklist_domain] += 1
#Log the recipients and deny or accept and spam-tagged counts
# Try to find an existing record for the email
action = parsed_data["action1"] # Extract action
if parsed_data['error-plugin'] == 'check_smtp_forward':
#extract rejected email address from sender
match = re.search(email_pattern, parsed_data['sender'])
# If a match is found, return the email address
if match:
email = match.group(0)
else:
email = "unknown (no email found in smtp reject message)"
elif parsed_data['error-plugin'] == 'check_badcountries':
email = "Unknown (Bad Country)"
elif not is_private_ip(parsed_data['ip']) and parsed_data["to-email"]:
#Only look at internal recipients from outside
#Take out the chevrons
email = parsed_data["to-email"].replace('<', '').replace('>', '')
email = get_first_email_with_domain(email,DomainName) # Extract email
if not email:
logging.error(f"Incoming email with no internal email address: {email} {DomainName}")
email = "Unknown (no internal email found)"
else:
if not is_private_ip(parsed_data['ip']):
email = "Unknown (non conf?)"
else:
email = None
if email:
record = next((item for item in recipients_found if item['email'] == email), None)
if not record:
# If email is not in the array, we add it
record = {"email": email,"accept": 0,"deny": 0,"spam-tagged": 0}
recipients_found.append(record)
# Update the deny or accept count based on action
if action != "queued":
record["deny"] += 1
else:
record["accept"] += 1
#and see if it is spam tagged
if Isqueuedspam:
record["spam-tagged"] += 1
#Now increment the column which the plugin name indicates
if parsed_data['error-msg'] and "msg denied before queued" in parsed_data['error-msg'] and parsed_data['virus']:
if parsed_data['error-plugin']:
row = search_2d_list(parsed_data['error-plugin'],columnPlugin)
if not row == -1:
columnCounts_2d[hour][row] += 1
columnCounts_2d[ColTotals][row] += 1
# a few ad hoc extra extractons of data
if row == Virus:
match = virus_pattern.match(parsed_data['virus'])
if match:
found_viruses[match.group(1)] += 1
else:
found_viruses[parsed_data['virus']] += 1
else:
found_qpcodes[parsed_data['error-plugin']] += 1
if isThonny:
logging.error() #seperate the [progress bar]
if count_ignored_mailstats > 0:
logging.info(f"Ignored {count_ignored_mailstats} mailstats emails")
# Compute percentages
total_Count = columnCounts_2d[ColTotals][TOTALS]
#Column of percentages
for row in range(ColTotals):
if total_Count == 0:
percentage_of_total = 0
else:
percentage_of_total = f"{round(round(columnCounts_2d[row][TOTALS] / total_Count,4) * 100,1)}%"
columnCounts_2d[row][PERCENT] = percentage_of_total
#Row of percentages
for col in range(TOTALS):
if total_Count == 0:
percentage_of_total = 0
else:
percentage_of_total = f"{round(round(columnCounts_2d[ColTotals][col] / total_Count,4) * 100,1)}%"
columnCounts_2d[ColPercent][col] = percentage_of_total
# and drop in the 100% to make it look correct!
columnCounts_2d[ColPercent][PERCENT] = '100%'
columnCounts_2d[ColTotals][PERCENT] = '100%'
columnCounts_2d[ColPercent][TOTALS] = '100%'
#other stats
emailperhour = (totalexamined / 24)
if not spamqueuedcount == 0:
spamavg = spamavg / spamqueuedcount
if not rejectspamcount == 0:
rejectspamavg = rejectspamavg / rejectspamcount
if not hamcount == 0:
hamavg = hamavg / hamcount
# Now scan for the other lines in the log of interest
found_countries = defaultdict(int)
geoip_pattern = re.compile(r".*check_badcountries: GeoIP Country: (.*)")
dmarc_pattern = re.compile(r".*dmarc: pass")
helo_pattern = re.compile(r".*Accepted connection.*?from (\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) \/ ([\w.-]+)")
connect_type_pattern = re.compile(r".*connect via (.*)")
tls_type_pattern = re.compile(r".*Go ahead with (.*)")
total_countries = 0
DMARCOkCount = 0
totalinternalsmtpsessions = 0
totalexternalsmtpsessions = 0
i = 0
j = 0
log_len = len(log_entries)
connection_type_counts = defaultdict(int)
if log_len > 0:
if isThonny:
print_progress_bar(0, log_len, prefix='Progress:', suffix='Complete', length=50)
for data in log_entries:
i += 1
if isThonny:
print_progress_bar(i, log_len, prefix='Scanning for sub tables:', suffix='Complete', length=50)
# Match initial connection message
IsInternal = True
try:
match = helo_pattern.match(data['MESSAGE'])
if match:
ip = match.group(1)
fqdn = match.group(2)
if is_private_ip(ip):
totalinternalsmtpsessions += 1
else:
totalexternalsmtpsessions += 1
IsInternal = False
continue
except Exception as e:
logging.error(f" Helo pattern error {e} {data['MESSAGE']} {analysis_date}")
continue
#Pull out Geoip countries for analysis table
try:
match = geoip_pattern.match(data['MESSAGE'])
if match:
j += 1
country = match.group(1)
found_countries[country] += 1
total_countries += 1
continue
except Exception as e:
logging.error(f"Geoip pattern error {e} {data['MESSAGE']} {analysis_date}")
continue
#Pull out DMARC approvals
match = dmarc_pattern.match(data['MESSAGE'])
if match:
DMARCOkCount += 1
continue
#Pull out type of connection
match = connect_type_pattern.match(data['MESSAGE'])
if match:
connection_type = match.group(1)
connection_type_counts[connection_type] += 1
continue
match = tls_type_pattern.match(data['MESSAGE'])
if match:
connection_type = match.group(1)
connection_type_counts[connection_type] += 1
continue
#Compute next and previous dates
day_format = "%Y-%m-%d"
# Convert the time string to a datetime object
date_obj = datetime.strptime(analysis_date, day_format)
# Compute the next date by adding one day
next_date = date_obj + timedelta(days=1)
# Compute the previous date by subtracting one day
previous_date = date_obj - timedelta(days=1)
# Convert the datetime objects back to strings in the desired format
next_date_str = next_date.strftime(day_format)
previous_date_str = previous_date.strftime(day_format)
# Create graphs of data
# yLabels = [f'{i:02d}:00' for i in range(len(columnCounts_2d))]
# stacked_Bar_html = create_stacked_bar_graph(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'stacked_bar_'+analysis_date+'.html')
# heatmap_html = create_heatmap(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'heatmap_'+analysis_date+'.html')
# line_graph_html = create_line_chart(columnCounts_2d,columnHeaders,yLabels,html_page_dir+'line_graph_'+analysis_date+'.html')
columnCounts_2d_dict = transform_to_dict(columnCounts_2d,columnHeaders,analysis_date)
#Export as json for testing
# with open("/opt/mailstats/html/colCounts_2d.json", "w") as json_file:
# json.dump(columnCounts_2d, json_file)
# with open("/opt/mailstats/html/colCounts_2d-dict", "w") as json_file:
# json.dump(columnCounts_2d_dict, json_file)
# with open("/opt/mailstats/html/keys.json", "w") as json_file:
# json.dump(columnHeaders, json_file)
if enable_graphs:
create_graph(columnCounts_2d_dict, "line", html_page_dir+"line_graph_"+analysis_date+".png",analysis_date)
create_graph(columnCounts_2d_dict, "bar", html_page_dir+"bar_graph_"+analysis_date+".png",analysis_date)
create_graph(columnCounts_2d_dict, "scatter", html_page_dir+"scatter_graph_"+analysis_date+".png",analysis_date)
create_graph(columnCounts_2d_dict, "pie", html_page_dir+"pie_chart_"+analysis_date+".png",analysis_date)
#Now apply the results to the chameleon template - main table
# Path to the template file
template_path = template_dir+'mailstats.html.pt'
# Load the template
with open(template_path, 'r') as template_file:
template_content = template_file.read()
#Use the hello string to create a suitable heading for the web page
html_title = hello_string.replace("printed at:"," <span class='greyed-out'>printed at:")
html_title += "</span>"
# Create a Chameleon template instance
try:
template = PageTemplate(template_content)
# Render the template with the 2D array data and column headers
try:
rendered_html = template(array_2d=columnCounts_2d, column_headers=columnHeaders,
reporting_date=analysis_date,
title=html_title,
version=version_string,
nolinks=nolinks,
PreviousDate=previous_date_str,
NextDate=next_date_str,
DomainName=DomainName,
SystemName=SystemName,
enable_graphs=enable_graphs
)
except Exception as e:
logging.error(f"Chameleon template Exception {e}")
except Exception as e:
logging.error(f"Chameleon render Exception {e}")
total_html = rendered_html
# Add in the header information
header_rendered_html = get_heading()
total_html = insert_string_after(total_html,header_rendered_html, "<!---Add in header information here -->")
#add in the subservient tables..(remeber they appear in the reverse order of below!)
#virus codes
virus_headers = ["Virus",'Count','Percent']
virus_title = 'Viruses found'
virus_rendered_html = render_sub_table(virus_title,virus_headers,found_viruses,suppress_threshold=True)
# Add it to the total
total_html = insert_string_after(total_html,virus_rendered_html, "<!---Add in sub tables here -->")
#qpsmtd codes
qpsmtpd_headers = ["Reason",'Count','Percent']
qpsmtpd_title = 'Qpsmtpd codes league table'
qpsmtpd_rendered_html = render_sub_table(qpsmtpd_title,qpsmtpd_headers,found_qpcodes)
# Add it to the total
total_html = insert_string_after(total_html,qpsmtpd_rendered_html, "<!---Add in sub tables here -->")
#Junk mails
junk_mail_count_headers = ['Username','Count', 'Percent']
junk_mail_counts = scan_mail_users()
junk_mail_count_title = 'Junk mail counts'
junk_rendered_html = render_sub_table(junk_mail_count_title,junk_mail_count_headers,junk_mail_counts,suppress_threshold=True)
# Add it to the total
total_html = insert_string_after(total_html,junk_rendered_html, "<!---Add in sub tables here -->")
#Recipient counts
recipient_count_headers = ["Email",'Queued','Rejected','Spam tagged','Accepted Percent']
recipient_count_title = 'Incoming email recipients'
recipient_rendered_html = render_sub_table(recipient_count_title,recipient_count_headers,recipients_found,suppress_threshold=True)
# Add it to the total
total_html = insert_string_after(total_html,recipient_rendered_html, "<!---Add in sub tables here -->")
#Geoip Country codes
geoip_headers = ['Country','Count','Percent','Rejected?']
geoip_title = 'Geoip results'
geoip_rendered_html = render_sub_table(geoip_title,geoip_headers,found_countries,get_character_in_reject_list)
# Add it to the total
total_html = insert_string_after(total_html,geoip_rendered_html, "<!---Add in sub tables here -->")
#Blacklist counts
blacklist_headers = ['URL','Count','Percent']
blacklist_title = 'Blacklist used'
blacklist_rendered_html = render_sub_table(blacklist_title,blacklist_headers,blacklist_found,suppress_threshold=True)
# Add it to the total
total_html = insert_string_after(total_html,blacklist_rendered_html, "<!---Add in sub tables here -->")
if saveData:
# Close the connection
cursor.close()
conn.close()
# Write the rendered HTML to a file
output_path = html_page_dir+'mailstats_for_'+analysis_date
output_path = output_path.replace(' ','_')
with open(output_path+'.html', 'w') as output_file:
output_file.write(total_html)
#and create a text version if the local version of html2text is suffiicent
if get_html2text_version() == '2019.9.26':
# Get temporary file
temp_file_name = tempfile.mktemp()
temp_file_name1 = tempfile.mktemp()
# see if html has links in the table entries, if not then use the current html file, else generate one
if not nolinks:
# i.e. links in html
# Render the template with the 2D array data and column headers
try:
rendered_html = template(array_2d=columnCounts_2d, column_headers=columnHeaders,
reporting_date=analysis_date,
title="",
version=version_string,
nolinks=True,
PreviousDate=previous_date_str,
NextDate=next_date_str,
DomainName=DomainName,
SystemName=SystemName,
enable_graphs=False
)
except Exception as e:
logging.error(f"Chameleon template Exception {e}")
# Need to add the sub tables
full_rendered_html = ''.join([
html_title+"<br />",
header_rendered_html,
rendered_html,
blacklist_rendered_html,
geoip_rendered_html,
recipient_rendered_html,
junk_rendered_html,
qpsmtpd_rendered_html,
virus_rendered_html
])
# delete next and prev
start = full_rendered_html.find("Previous")
end = full_rendered_html.find("Table")
full_rendered_html = full_rendered_html[:start] + full_rendered_html[end:]
with open(temp_file_name, 'w') as output_file:
output_file.write(full_rendered_html)
else:
temp_file_name = output_path+'.html'
html_to_text(temp_file_name,temp_file_name1)
logging.info(f"Rendered HTML saved to {temp_file_name1}")
# and save it if required
if not notextfile:
text_file_path = output_path+'.txt'
# and rename it
os.rename(temp_file_name1, text_file_path)
else:
text_file_path = temp_file_name1
else:
text_file_path = ""
logging.info(f"Written {count_records_to_db} records to DB")
html_content = None
text_content = None
#Now see if Email required
if EmailTextorHTML:
if EmailTextorHTML == "HTML" or EmailTextorHTML == "Both":
# Send html email (default))
filepath = html_page_dir+"mailstats_for_"+analysis_date+".html"
html_content = read_html_from_file(filepath)
# Replace the Navigation by a "See in browser" prompt
replace_str = f"<div class='divseeinbrowser'><a class='seeinbrowser' href='http://{SystemName}.{DomainName}/mailstats/mailstats_for_{analysis_date}.html'>See in browser</a></div>"
html_content = replace_between(html_content, "<div class='linksattop'>", ">Next</a></div>", replace_str)
if not noemailfile:
# Write out the email html to a web page
email_file = html_page_dir + "Email_mailstats_for_"+analysis_date
with open(email_file+'.html', 'w') as output_file:
output_file.write(html_content)
if EmailTextorHTML == "Text" or EmailTextorHTML == "Both":
#filepath = html_page_dir+"mailstats_for_"+analysis_date+".txt"
if not text_file_path == "":
text_content = read_text_from_file(text_file_path)
else:
text_content = "No text avaiable (as html2text was not installed) "
if EMailSMTPUser:
# Send authenticated
logging.info("Sending authenticated")
send_email(
subject="Mailstats for "+analysis_date,
from_email="mailstats@"+DomainName,
to_email=EmailAddress,
smtp_server=EmailHost,
smtp_port=EmailPort,
HTML_content=html_content,
Text_content=text_content,
smtp_user=EMailSMTPUser,
smtp_password=EMailSMTPPassword
)
else:
# No authentication
logging.info(f"Sending non authenticated {EmailAddress} {EmailHost}")
try:
send_email(
subject="Mailstats for "+analysis_date,
from_email="mailstats@"+DomainName,
to_email=EmailAddress,
smtp_server=EmailHost,
smtp_port=EmailPort,
HTML_content=html_content,
Text_content=text_content
)
except Exception as e:
logging.error(f"Email Exception {e}")